The Tennis Formula: How it can be used in Professional Tennis

A. James O'Malley
Harvard Medical School

Email: omalley@hcp.med.harvard.edu
September 29, 2007

Overview

- Tennis scoring
- The tennis formula and its properties
- Other tennis-related formulas
- Applications of tennis formula
- Future work

Scoring in tennis

- points: love, $15,30,40$, deuce, advantage.
- games: love, $1,2,3,4,5,6,(7)$.
- sets: love, 1, 2, (3).
- first to win four points or more by margin of two wins the game.
- first to win six games by margin of two or otherwise seven games wins the set (tiebreaker at six all).
- first to win two (or three) sets wins the match.

"Tennis Formula"

- Let p denote the probability that a player wins a single point serving.
- Assume probability is fixed throughout game (match).

$$
\begin{aligned}
\operatorname{Pr}(\text { Win game })= & p^{4}+4 p^{4}(1-p)+10 p^{4}(1-p)^{2} \\
& +20 p^{3}(1-p)^{3} \cdot \frac{p^{2}}{1-2 p(1-p)} \\
= & p^{4}\left(15-4 p-\frac{10 p^{2}}{1-2 p(1-p)}\right)
\end{aligned}
$$

Tennis formula, its derivative, and integral functions

Properties of tennis formula

- Asymmetric - point of inflection at $\boldsymbol{p}=0.5$.
- Monotone increasing
- Derivative function reveals where improve performance is most beneficial.

$$
\frac{d \operatorname{Pr}(p)}{d p}=20 p^{3}\left(3-p+\frac{5 p^{3}-3 p^{2}+4 p^{4}}{(1-2 p(1-p))^{2}}\right)
$$

- Integral function gives probability of winning when serving probability selected at random.
$\int_{0}^{p} \operatorname{Pr}(x) d x=-\frac{2}{3} p^{6}+2 p^{5}-\frac{5}{4} p^{4}-\frac{5}{6} p^{3}+\frac{5}{4} p+\frac{5}{8} \log (1-2 p(1-p))$
- Average over whole range $\int_{0}^{1} \operatorname{Pr}(x) d x=0.5$.

Other probabilities

- Probability of winning:
- tie-breaker.
- set or match.
- from a break down in final set.
- Derive similarly to the tennis formula; using tree diagram/dynamic programming approach.

Probability of winning tiebreaker

- Tie-breaker is longer than a regular service game.
- Involves both players serving, $q=$ opponents probability of winning point on serve.
- When $q=1-p$ expect curve to be steeper than for the tennis formula.

Probability of winning tie-breaker

Probability of winning set and match

- Functions of game and tie-breaker winning probabilities.
- Thus, also of point-winning probabilities.
- Interested in how steeply odds favor better player.

Probability of winning match

Difference of probabilities over match duration

Comparison of tennis formula to empirical data?

- Formula's are based on assumptions:
- Independence between points.
- Homogeneous probabilities.
- Obtained data from Wimbledon 2007 (Mens singles).
- Compare empirical game winning percentages to predictions.

Predicted v. Actual Proportion of Service Games Won

Lack of homogeneity of points across game

- 118 saves out of 208 break points, $p_{\text {save }}=0.549$.
- 2,101 out of 3,156 service points won at other stages of game, $p_{\text {other }}=0.666$.
- P-value of difference ≈ 0.0053.

Applications of tennis formula

- By players to focus training efforts.
- By players to evaluate where to concentrate match preparation.
- By commentary teams to make broadcast more interesting.
- Useful in determining effect of a rule change.

Training and match preparation

- Compute proportion of points one on serve and while receiving against all opponents.
- Evaluate corresponding probabilities of winning a match.
- Determine if more beneficial to improve serve or return game.
- Work on improving that aspect of game.
- Could extend this by averaging over types of opponents (left-handers, right-handers) to obtain more accuracy.
- Before playing a match analyze head-to-head data.

Example

- Probability win service point $=0.65$.
- Probability win receiving point $=0.37$.
- Probability win 3 set match $=0.5985$.
- Suppose focused training could improve serve probability by 1.1 percentage points or return by 1 percentage point. Where to focus effort?
- If improve service by $10 \%: \operatorname{Pr}($ match $)=0.6497$.
- If improve return by $10 \%: \operatorname{Pr}($ match $)=0.6466$.
- Better to improve serve!

Making tennis commentary more interesting

- Report likelihood that each player wins match if:
- Current point-winning percentage is maintained.
- Players revert to historical winning proportions.
- Probabilities became equal.
- Stopped playing and tossed a coin.
- Calibrate statement "match is effectively over if player A breaks serve".

Chance of winning when break down in final set.

	Scenario			
	$p=0.62$	$p=0.67$	$p=0.645$	$p=0.5$
Situation	$q=0.67$	$q=0.62$	$q=0.645$	$q=0.5$
$4-5$	0.1420	0.2165	0.1775	0.2500
$3-5$	0.0880	0.1451	0.1145	0.1250
$2-5$	0.0546	0.0972	0.0738	0.0625
$3-4$	0.2033	0.3038	0.2513	0.3125
$2-4$	0.1371	0.2217	0.1765	0.1875
$1-4$	0.0850	0.1486	0.1139	0.0938
$2-3$	0.2350	0.3526	0.2914	0.3438
$1-3$	0.1675	0.2716	0.2162	0.2266
$0-3$	0.1145	0.2006	0.1538	0.1367

Rule change

- In 1999 a change in the scoring of tennis was proposed.
- Replace deuce-advantage system with sudden death.
- At deuce the next point decides the game.
- Pete Sampras was against, Andre Agassi supported, the change.

New Tennis formula

- Probability of winning game under new scoring system changes to:

$$
\operatorname{pr}(\text { game }- \text { new })=p^{4}+4 p^{4}(1-p)+10 p^{4}(1-p)^{2}+20 p^{4}(1-p)^{3}
$$

- Compute change in probability of winning match.

Sampras-Agassi Data (from 1999)

Statistic	Sampras	Agassi
Serving point	0.709	0.657
Return point	0.371	0.418
$\operatorname{Pr}($ Win match - new)	0.8210	0.8092
$\operatorname{Pr}($ Win match - old $)$	0.8331	0.8296
Net gain	-0.0121	-0.0205

Future work

- More realistic models - allow probabilities to vary through stages of match.
- At deuce, on break- or set-points, between sets.
- Use models to examine player performance at crucial stages of a match.
- When to be most wary or optimistic against certain opponents.

