Evaluating Baseball Metrics Using a Point-Mass Mixture Random Effects Model

New England Symposium on Statistics in Sports

Blakeley B. McShane
Department of Statistics
The Wharton School
University of Pennsylvania

Coauthors:

Alex Braunstein (Google)
James Piette (Wharton Statistics)
Shane Jensen (Wharton, Statistics)

Numbers Are Bad

Numbers Are Bad

I don't understand. All of a sudden, it's not just BA and Runs Scored, it's OBA. And what is with $O-P-S$?
-Harold Reynolds, 2004

Numbers Are Bad

I don't understand. All of a sudden, it's not just BA and Runs Scored, it's OBA. And what is with $O-P-S$?
-Harold Reynolds, 2004

You press a few buttons and out come the numbers in new ways. Trouble is, most of them don't add much to what we already know. -Seymour Siwoff, 1980

Numbers Are Bad

I don't understand. All of a sudden, it's not just BA and Runs Scored, it's OBA. And what is with $O-P-S$?
-Harold Reynolds, 2004

You press a few buttons and out come the numbers in new ways. Trouble is, most of them don't add much to what we already know. -Seymour Siwoff, 1980

The game of statistics has begun to run away with the game of baseball. It mean, it's not a sport anymore, it's a multiplication table with base lines.
-Jim Murray, 1961

Numbers Are Bad

I don't understand. All of a sudden, it's not just BA and Runs Scored, it's OBA. And what is with O-P-S?
-Harold Reynolds, 2004

You press a few buttons and out come the numbers in new ways. Trouble is, most of them don't add much to what we already know. -Seymour Siwoff, 1980

The game of statistics has begun to run away with the game of baseball. It mean, it's not a sport anymore, it's a multiplication table with base lines.
-Jim Murray, 1961
The greatest menace to big-time sports today is... a nonsense of numbers and the stupefying emphasis on meaningless statistics which is draining the color from competition.
-Stanley Frank, 1958

Numbers Are Good...And Old

Numbers Are Good...And Old

The Chicken Littles who complained that baseball's sky was falling in conveniently forgot that Earl Weaver kept batter-pitcher breakdowns on index cards, and that Whitey Herzog, who believed that defense won more games than statistics showed, used to sit in his office every day and chart every ball hit during his games. Or that the brilliant Branch Rickey used a Canadian statistician, Allan Roth, in the 1940s to help run the Brooklyn Dodgers. Or that all the way back to the 1860s, writers such as Henry Chadwick were fiddling around with new-fangled defensive statistics.
-Peter Gammons, 2004

The Numbers Game

- Baseball, statistics, and controversy are as old as the game itself (Schwarz, 2004).

The Numbers Game

- Baseball, statistics, and controversy are as old as the game itself (Schwarz, 2004).
- Not a product of the Moneyball era.

The Numbers Game

- Baseball, statistics, and controversy are as old as the game itself (Schwarz, 2004).
- Not a product of the Moneyball era.
- Many "new" statistics are nothing of the sort:

The Numbers Game

- Baseball, statistics, and controversy are as old as the game itself (Schwarz, 2004).
- Not a product of the Moneyball era.
- Many "new" statistics are nothing of the sort:
- ISO dates from Branch Rickey and Allan Roth's work in the 1950s

The Numbers Game

- Baseball, statistics, and controversy are as old as the game itself (Schwarz, 2004).
- Not a product of the Moneyball era.
- Many "new" statistics are nothing of the sort:
- ISO dates from Branch Rickey and Allan Roth's work in the 1950s
- Bill James' Range Factor hearkens back to work by Henry Chadwick in 1870.

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.
- One cannot make sense of all of them.

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.
- One cannot make sense of all of them.
- Which metrics matter?

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.
- One cannot make sense of all of them.
- Which metrics matter?
- Which demonstrate signal?

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.
- One cannot make sense of all of them.
- Which metrics matter?
- Which demonstrate signal?
- Which are noisy?

What's the Problem?

- Regardless of their provenance, there are vast numbers of baseball statistics.
- One cannot make sense of all of them.
- Which metrics matter?
- Which demonstrate signal?
- Which are noisy?
- Which are redundant?

When a Metric Matters

- If a metric were pure noise:

When a Metric Matters

- If a metric were pure noise:
- Players would be inconsistent from season to season.

When a Metric Matters

- If a metric were pure noise:
- Players would be inconsistent from season to season.
- Best prediction = league average.

When a Metric Matters

- If a metric were pure noise:
- Players would be inconsistent from season to season.
- Best prediction = league average.
- This suggests a minimum threshold for a metric:

When a Metric Matters

- If a metric were pure noise:
- Players would be inconsistent from season to season.
- Best prediction = league average.
- This suggests a minimum threshold for a metric: Players must perform consistently with respect to this metric over time.

When a Metric Matters

- If a metric were pure noise:
- Players would be inconsistent from season to season.
- Best prediction = league average.
- This suggests a minimum threshold for a metric: Players must perform consistently with respect to this metric over time.
- In other words, when predicting what a player will do, we'd rather know about his performance history on that metric than the league's performance.

When a Metric Matters

- Two natural criteria for metrics that matter:

When a Metric Matters

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.

When a Metric Matters

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
- High confidence about who to use player-specific information for and who to use league information for.

The Model in Math

$$
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) \quad \text { Likelihood }
$$

The Model in Math

$$
\begin{array}{rlrl}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim & N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & & \text { League Mean }
\end{array}
$$

$$
\begin{aligned}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & \text { League Mean } \\
\alpha_{i} \mid \tau^{2}, \gamma_{i} \sim \begin{cases}\approx 0 & \text { if } \gamma_{i}=0 \\
N\left(0, \tau^{2}\right) & \text { if } \gamma_{i}=1\end{cases} & \text { Player Difference }
\end{aligned}
$$

$$
\begin{aligned}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & \text { League Mean } \\
\alpha_{i} \mid \tau^{2}, \gamma_{i} \sim \begin{cases}\approx 0 & \text { if } \gamma_{i}=0 \\
N\left(0, \tau^{2}\right) & \text { if } \gamma_{i}=1\end{cases} & \text { Player Differenc } \\
\gamma_{i} \sim \text { Bernoulli }\left(p_{1}\right) & \text { Player Indicator }
\end{aligned}
$$

The Model in Math

$$
\begin{aligned}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & \text { League Mean } \\
\alpha_{i} \mid \tau^{2}, \gamma_{i} \sim\left\{\begin{aligned}
\approx 0 & \text { if } \gamma_{i}=0 \\
N\left(0, \tau^{2}\right) & \text { if } \gamma_{i}=1
\end{aligned}\right. & \text { Player Differer } \\
\gamma_{i} \sim \operatorname{Bernoulli}\left(p_{1}\right) & \text { Player Indicatc } \\
p_{1} \sim \operatorname{Beta}(1,1) & \text { Fraction }
\end{aligned}
$$

The Model in Math

$$
\begin{aligned}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & \text { League Mean } \\
\alpha_{i} \mid \tau^{2}, \gamma_{i} \sim\left\{\begin{aligned}
\approx 0 & \text { if } \gamma_{i}=0 \\
N\left(0, \tau^{2}\right) & \text { if } \gamma_{i}=1
\end{aligned}\right. & \text { Player Difference } \\
\gamma_{i} \sim \operatorname{Bernoulli}\left(p_{1}\right) & \text { Player Indicator } \\
p_{1} \sim \operatorname{Beta}(1,1) & \text { Fraction } \\
\sigma^{2} \sim \operatorname{IG}\left(\alpha_{0}, \beta_{0}\right) & \text { Season Variance }
\end{aligned}
$$

The Model in Math

$$
\begin{aligned}
y_{i j} \mid \alpha_{i}, \sigma^{2}, \mu \sim N\left(\mu+\alpha_{i}, \sigma_{i j}^{2}\right) & \text { Likelihood } \\
\mu \sim N\left(0, K^{2}\right) & \text { League Mean } \\
\alpha_{i} \mid \tau^{2}, \gamma_{i} \sim\left\{\begin{aligned}
\approx 0 & \text { if } \gamma_{i}=0 \\
N\left(0, \tau^{2}\right) & \text { if } \gamma_{i}=1
\end{aligned}\right. & \text { Player Difference } \\
\gamma_{i} \sim \operatorname{Bernoulli}\left(p_{1}\right) & \text { Player Indicator } \\
p_{1} \sim \operatorname{Beta}(1,1) & \text { Fraction } \\
\sigma^{2} \sim \operatorname{IG}\left(\alpha_{0}, \beta_{0}\right) & \text { Season Variance } \\
\tau^{2} \sim \operatorname{IG}\left(\gamma_{0}, \delta_{0}\right) & \text { Player Variance }
\end{aligned}
$$

The Model in Pictures

Distribution of Player Mean Differences from League Mean

Analyzing Metrics

- Two natural criteria for metrics that matter:

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for.

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for. \Rightarrow Use the posterior γ_{i} to calculate average entropy across all players.

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for. \Rightarrow Use the posterior γ_{i} to calculate average entropy across all players.
- Apply to player-season level baseball data:

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for. \Rightarrow Use the posterior γ_{i} to calculate average entropy across all players.
- Apply to player-season level baseball data:
- Hitting: 50 metrics from 8,596 player-seasons from 1,575 unique players spanning 1974-2008 seasons

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for. \Rightarrow Use the posterior γ_{i} to calculate average entropy across all players.
- Apply to player-season level baseball data:
- Hitting: 50 metrics from 8,596 player-seasons from 1,575 unique players spanning 1974-2008 seasons
- Pitching: 20 metrics fit separately for starters and relievers spanning 1974-2008 seasons; 959 unique starters and 1,407 unique relievers.

Analyzing Metrics

- Two natural criteria for metrics that matter:
- Player-specific information trumps league information for a large fraction of players.
\Rightarrow Use the posterior mean of parameter p_{1}.
- High confidence about who to use player-specific information for and who to use league information for. \Rightarrow Use the posterior γ_{i} to calculate average entropy across all players.
- Apply to player-season level baseball data:
- Hitting: 50 metrics from 8,596 player-seasons from 1,575 unique players spanning 1974-2008 seasons
- Pitching: 20 metrics fit separately for starters and relievers spanning 1974-2008 seasons; 959 unique starters and 1,407 unique relievers.
- Data comes from fangraphs.com.

Clear Separation

p1 vs. Negative Entropy

Focus on High Signal Metrics

Zoomed: p1 vs. Negative Entropy

PCA: Metrics Have Signal But Are Redundant

Principal Components Analysis

A Closer Look

ISO - Isolated Power			BB (walk) rate							
Player	Mean $\left(\mu+\alpha_{i}\right)$		Player	Mean $\left(\mu+\alpha_{i}\right)$						
	Estimate	SD		Estimate	SD					
Mark McGwire	0.320	0.010	Barry Bonds	0.204	0.004					
Barry Bonds	0.304	0.008	Gene Tenace	0.186	0.007					
Ryan Howard	0.293	0.016	Jimmy Wynn	0.183	0.010					
Jim Thome	0.287	0.009	Ken Phelps	0.176	0.011					
Albert Pujols	0.281	0.011	Jack Cust	0.176	0.012					
League Mean $\hat{\mu}=0.142$								League Mean $\hat{\mu}=0.087$		

Spd - Speed		K (strikeout) rate			
Player	Mean $\left(\mu+\alpha_{i}\right)$		Player	Mean $\left(\mu+\alpha_{i}\right)$	
	Estimate	SD		Estimate	SD
Vince Coleman	8.55	0.30	Jack Cust	0.388	0.018
Jose Reyes	8.22	0.40	Russell Branyan	0.376	0.021
Carl Crawford	8.14	0.36	Melvin Nieves	0.371	0.020
Willie Wilson	8.13	0.25	Rob Deer	0.351	0.010
Omar Moreno	7.89	0.31	Mark Reynolds	0.347	0.018
League Mean $\hat{\mu}=4.11$		League Mean $\hat{\mu}=0.166$			

A Continuum of Signal

p1 vs. Negative Entropy

Focus on High Signal Metrics

Zoomed: p1 vs. Negative Entropy

A Closer Look at Starters

FIP - Fielding Independent Pitching			HR/9 - Home Run Rate		
Player	Mean $\left(\mu+\alpha_{i}\right)$		Player	Mean $\left(\mu+\alpha_{i}\right)$	
	Estimate	SD		Estimate	SD
Nolan Ryan	3.02	0.12	Scott Elarton	1.53	0.11
Pedro Martinez	3.03	0.14	Jose Lima	1.48	0.09
Scott Elarton	5.28	0.24	Eric Milton	1.43	0.08
J.R. Richard	3.06	0.18	Brian Anderson	1.39	0.09
Roger Clemons	3.13	0.10	Rick Helling	1.38	0.09
League Mean $\hat{\mu}=4.16$			League Mean $\hat{\mu}=0.94$		

ERA - Earned Run Average		BB/9 - Walk Rate			
Player	Mean $\left(\mu+\alpha_{i}\right)$		Player	Mean $\left(\mu+\alpha_{i}\right)$	
	Estimate	SD		Estimate	SD
Jim Palmer	3.16	0.20	Kazuhisa Ishii	5.10	0.35
Pedro Martinez	3.17	0.19	Bobby Witt	4.85	0.17
Roger Clemons	3.22	0.15	Jose DeJesus	4.84	0.38
Jose Rijo	3.25	0.24	Daniel Cabrera	4.78	0.27
Greg Maddux	3.27	0.14	Bob Tewksbury		
League League Mean $\hat{\mu}=3.52$				0.20	

A Closer Look at Relievers

GB\% - Ground Ball Percentage			FB\% - Fly Ball Percentage		
Player	Mean $\left(\mu+\alpha_{i}\right)$		Player	Mean $\left(\mu+\alpha_{i}\right)$	
	Estimate	SD		Estimate	SD
Cla Meredith	. 662	. 026	Troy Percival	. 544	. 016
Bill Swift	. 634	. 026	Cla Meredith	. 178	. 026
Chad Bradford	. 629	. 020	Bill Swift	. 188	. 025
Roger McDowell	. 625	. 014	Carlos Marmol	. 511	. 028
Roy Corcoran	. 623	. 039	Roger McDowell	. 194	. 014
League Mean $\hat{\mu}=.449$			League Mean $\hat{\mu}=.351$		
K/9 - Strike Out Rate			BB/9 - Walk Rate		
Player	Mean ($\mu+\alpha_{i}$)		Player	Mean ($\mu+\alpha_{i}$)	
	Estimate	SD		Estimate	SD
Brad Lidge	12.0	0.46	Mitch Williams	6.42	0.26
Rob Dibble	11.9	0.48	Stephen Randolph	5.98	0.52
Billy Wagner	11.6	0.35	Mark Clear	5.90	0.25
Octavio Dotel	11.4	0.45	Dennis Eckersley	1.54	0.24
Eric Gagne	11.2	0.52	Dan Quisenberry	1.56	0.21
League Mean $\hat{\mu}=6.45$			League Mean $\hat{\mu}=3.70$		

Conclusion

- Hitting:

Conclusion

- Hitting:
- A large number of metrics have signal.

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).
- Seymour Siwoff was right!

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).
- Seymour Siwoff was right!
- Pitching:

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).
- Seymour Siwoff was right!
- Pitching:
- High signal metrics vary between starters and relievers.

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).
- Seymour Siwoff was right!
- Pitching:
- High signal metrics vary between starters and relievers.
- For starters, high signal metrics measure overall pitching performance.

Conclusion

- Hitting:
- A large number of metrics have signal.
- But, they are highly correlated with one another.
- And, related to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).
- Seymour Siwoff was right!
- Pitching:
- High signal metrics vary between starters and relievers.
- For starters, high signal metrics measure overall pitching performance.
- For relievers, they relate to specialized roles (e.g., ground ball percentage).

Hitting Metrics I

1. Simple hitting totals and rates

Metric	Weight	Description	Metric	Weight	Description
1B	PA	singles	1B/PA	PA	single rate
2B	PA	doubles	2B/PA	PA	double rate
3B	PA	triples	SB/PA	PA	triple rate
HR	PA	home runs	HR/PA	PA	home run rate
R	PA	runs	R/PA	PA	run rate
RBI	PA	runs batted in	RBI/PA	PA	runs batted in rate
BB	PA	base on balls (walk)	BB/PA	PA	walk rate
IBB	PA	intentional walk	IBB/PA	PA	intentional walk rate
K	PA	strike outs	K/PA	PA	strike out rate
HBP	PA	hit by pitch	HBP/PA	PA	hit by pitch rate
BUH	H	bunt hits	BUH/H	H	bunt hit proportion
H	PA	hits	GDP	PA	ground into double play
SF	PA	sacrifice fly	SH	PA	sacrifice hit

Hitting Metrics II

2. More complicated hitting totals and rates

Metric	Weight	Description
OBP	PA *	on base percentage (OB/PA*)
AVG	AB	batting average (H/AB)
SLG	AB	slugging percentage
OPS	AB \times PA* *	OPB + SLG
ISO	AB	isolated power (SLG-AVG)
BB/K	PA	walk to strikeout ratio
HR/FB	PA	home run to fly ball ratio
GB/FB	BIP	ground ball to fly ball ratio
BABIP	BIP	batting average for balls in play
LD/BIP	BIP	line drive rate
GB/BIP	BIP	ground ball rate
FB/BIP	BIP	fly ball rate
IFFB/FB	FB	infield fly ball proportion
IFH	GB	in field hit
IFH/H	GB	in field hit proportion
wOBA	PA	weighted on base average
wRC	PA	runs created based on wOBA
wRAA	PA	runs above average based on wOBA

PA* = plate appearances minus sacrifice hits.

Hitting Results

Metric	\hat{p}_{1}	Neg. Ent.
HR/PA	0.993	-0.034
RBI/PA	0.992	-0.040
Spd	0.991	-0.044
ISO	0.989	-0.052
SBPA	0.989	-0.057
SH	0.988	-0.057
1B/PA	0.987	-0.059
GDP	0.983	-0.080
K/PA	0.982	-0.074
HR	0.981	-0.083
RBI	0.980	-0.089
H	0.978	-0.098
K	0.977	-0.093
BB/PA	0.977	-0.095
R	0.974	-0.110
2B/PA	0.969	-0.129
BABIP	0.968	-0.130

Metric	\widehat{p}_{1}	Neg. Ent.
HR/FB	0.968	-0.121
SLG	0.968	-0.127
R/PA	0.952	-0.176
wOBA	0.949	-0.180
GB/BIP	0.949	-0.169
wRC	0.945	-0.193
BUH/H	0.943	-0.209
FB/BIP	0.937	-0.199
OBP	0.936	-0.213
IFH/H	0.936	-0.218
OPS	0.930	-0.227
2B	0.930	-0.235
IFFB/FB	0.916	-0.260
BB	0.912	-0.262
1B	0.910	-0.276
AVG	0.905	-0.289
wRAA	0.809	-0.430

Metric	\hat{p}_{1}	Neg. Ent.
SF	0.789	-0.490
3B/PA	0.780	-0.483
CS/OB	0.723	-0.493
GB/FB	0.720	-0.462
BB/K	0.681	-0.505
LD/BIP	0.626	-0.633
IFH	0.567	-0.589
IBB/PA	0.470	-0.581
CS	0.453	-0.530
3B	0.453	-0.575
HDP/PA	0.366	-0.444
SB/OB	0.345	-0.356
HBP	0.333	-0.423
IBB	0.297	-0.463
SB	0.279	-0.341
BUH	0.170	-0.210

Pitching Metrics

Metric	Description
AVG	batting average against
BABIP	batting average in balls in play
FB\%	fly ball percentage
GB\%	ground ball percentage
LF\%	line drive percentage
IFFB\%	infield fly ball percentage
K/9	strikeouts per nine innings
BB/9	walks per nine innings
HR/9	home runs per nine innings
K/BB	strikeout to walk ratio
GB/FB	ground ball to fly ball ratio
HR/FB	home run to fly ball ratio
LOB\%	left on base percentage
ERA	earned run average
FIP	fielding independent pitching (Tom Tango)
E-F	ERA - FIP
WHIP	walks and hits per inning
RS	run support
RS/9	run support per nine innings
Pitches	number of pitches thrown

Note: we weight by Innings Pitched (IP) for all metrics.

Pitching Results

Pitcher	Metric	\widehat{p}_{1}	Neg. Ent.
Reliever	IFFB\%	0.995	-0.024
Starter	IFFB\%	0.995	-0.021
Reliever	GB\%	0.984	-0.069
Reliever	FB\%	0.982	-0.076
Reliever	K/9	0.979	-0.090
Starter	FIP	0.965	-0.139
Starter	HR/9	0.952	-0.181
Starter	Pitches	0.948	-0.194
Starter	ERA	0.941	-0.216
Starter	BB/9	0.935	-0.219
Reliever	RS/9	0.904	-0.297
Reliever	BB/9	0.901	-0.301
Starter	HR/FB	0.896	-0.325
Reliever	RS	0.894	-0.323
Starter	WHIP	0.892	-0.325
Starter	FB\%	0.888	-0.307
Starter	RS	0.886	-0.345
Starter	K/9	0.877	-0.317
Reliever	ERA	0.867	-0.387
Reliever	HR/9	0.865	-0.385

Pitcher	Metric	\widehat{p}_{1}	Neg. Ent.
Reliever	BABIP	0.843	-0.431
Starter	GB\%	0.807	-0.419
Starter	BABIP	0.799	-0.480
Reliever	LOB\%	0.794	-0.504
Reliever	GB/FB	0.793	-0.433
Starter	RS/9	0.769	-0.524
Starter	AVG	0.745	-0.530
Reliever	LD\%	0.739	-0.570
Reliever	FIP	0.732	-0.551
Starter	LOB\%	0.719	-0.581
Starter	E-F	0.705	-0.597
Reliever	HR/FB	0.694	-0.609
Reliever	Pitches	0.662	-0.613
Reliever	E-F	0.632	-0.655
Reliever	AVG	0.627	-0.629
Reliever	WHIP	0.613	-0.639
Starter	LD\%	0.516	-0.659
Starter	GB/FB	0.442	-0.521
Starter	K/BB	0.317	-0.494
Reliever	K/BB	0.041	-0.084

