Using Random Forests to Estimate Win Probability Before Each Play of an NFL Football Game

Dennis Lock

Dan Nettleton

Introduction

- Idea
 - At any specific moment of an NFL game, find the probability a particular team will ultimately win the game.
 - For example, what's the probability a team receiving the ball on the 20 yard line down 3 with 2 minutes left will go on to win the game?
 - We combine pre-play variables to estimate win probability (WP) at any moment in an NFL game using a random forest methodology.

Introduction

- Idea
 - Demonstrate the use of WP estimates:
 - Fan interest
 - Plot the course of a game using win probability
 - Real time win probability estimation
 - Evaluate plays and play calling decisions
 - Example: Was Baltimore's decision to take an intentional safety late in the 4th quarter of Superbowl 47 a good one?

Introduction

Motivation

- Develop an alternative to Brian Burke's win probability found at <u>www.advancednflstats.com</u>
- Why?
 - 1. Estimate WP empirically through objective "binning".
 - Include information measuring the quality of both teams competing.
 - Develop a method that can be easily repeated on a new set of variables, especially in a different sport.

Data

- Recently (since 2000) the NFL began releasing playby-play data from all games, regular and post season.
 - We use the seasons 2001 2011 as training data and the 2012 season as test data.
 - Raw play-by-play data was downloaded from: www.armchairanalysis.com

Random Forest Method

Data

- Observational Unit: A pre-play situation observed with respect to the offensive team.
 - Example: 1st and 10 on the 20 yard line down by 3 with 2 minutes remaining.
 - Score Difference = -3 implies the team with the ball is losing by 3.
 - Win probability is estimated for the offensive team.

- Data
 - Variables:
 - Binary Response, $y_i = I(Offense\ Won_i)$
 - Predictor variables: down, yards to go for a first down, field position, seconds remaining, score difference, adjusted score difference, total points scored, time outs remaining, and the Las Vegas point spread

$$adjusted \ score \ difference = \frac{score \ difference}{\sqrt{seconds \ remaining}}$$

Random Forest Method

- Random Forest
 - A random forest is a combination of either classification or regression trees.
 - A tree is effectively a nearest neighbors method of binning observations on values of the predictor variables in order to maximize within-bin homogeneity of the training responses.
 - We chose to use a random forest of regression trees.
 - A regression tree takes the average of the response values in a resulting bin as a predicted response for future observations in that bin.

Random Forest Method

- Random Forest
 - Each tree of the random forest has two adjustments in order to grow a variety of trees:
 - 1. Each tree is grown on a bootstrapped version of the original sample.
 - 2. At each split of the training observations, only a subset of the variables are considered as candidates for deciding the splitting rule.

- Why Random Forest?
 - 1. Allows for complex unknown interactions between predictor variables
 - Example: Score difference and time interact, but we don't know how.
 - 2. Predictions are entirely on empirical evidence
 - Minimal dangerous assumptions

- Why Random Forest?
 - 3. Nicely handles outliers
 - Blowout victories aren't overly influential
 - 4. Easily obtain variable importance measurements

Good predictability!

- Performance
 - Test set Mean Absolute Error by quarter:

Quarter:	1	2	3	4
Error:	0.408	0.346	0.276	0.199

Performance

Super Bowl 47 (BAL 34 – 31 SF)

Play Calling

- By taking an intentional safety Baltimore increased there WP from 91.8% to 94.2%.
- Changes in Win Probability (△WP) such as this can be used to evaluate play calling decisions.
- For instance by kicking a surprise onside kick (successfully) in Superbowl 44, the Saints increased their win probability by 7%.

- Play Calling
 - We can also use average △WP to evaluate play calling decisions, examples:
 - The average $\triangle WP$ for surprise onside kicks is approximately +0.02.
 - ΔWP and average ΔWP could be used to make real-time decisions on plays such as 4^{th} down decisions.

Superbowl 42 (NYG 17 – 14 NE)

- Influential Plays
 - We can judge the most influential plays from a set of plays (season, game, etc.) using ΔWP .
 - The best Super Bowl play of the last 12 years as judged by $\triangle WP$ was James Harrison's 100 yard interception return before halftime in 2008 ($\triangle WP$ =0.510).
 - The best play of the 2012 season was a 39 yard touchdown reception by Cecil Shorts down 5 with 20 seconds remaining (ΔWP=0.710)

Future Considerations

- Feature of the data
 - Each game has approximately 150 sequential observations all predicting 1 response value (Won or lost).
 - Independent observations?
 - No
 - Stochastic observations?
 - Maybe not
 - We have attempted methods to account for these possible problems but none improve performance.

- Other Sports
 - Extending the win probability to other sports
 - Easy in sports that have a clear "pre-play" situation like a possession in basketball or pitch in baseball.
 - May be more of a challenge in flow sports such as hockey or soccer.

Takeaways

- Two Takeaways
 - The Random Forest is a fairly simple and effective way of estimating win probability!
 - Estimated WP can have many uses.
 - "In any sport win probability is basically the holy grail of analytics."

-Brian Burke

Thank You!

Email: Dennis.F.Lock@gmail.com

Website: lockanalytics.com