Trouble with the Curve: Automatic Clustering of PITCHf/x Data

Michael A. Pane mpane@andrew.cmu.edu

Department of Statistics, Carnegie Mellon University joint work with Samuel L. Ventura, Rebecca C. Steorts, and Andrew C. Thomas

September 21, 2013

- Baseball and Pitcher Background.
- PITCHf/x introduction.
- Automatic Clustering of Pitch Types.
- Current Methods (MLB-AM and Brooks Baseball).
- Proposed Methods.
- Model-Based Clustering with Gaussian Mixture Model.
- Choosing Correct Number of Pitches ($\mathrm{BIC}_{a d j}$).
- Label clusters (Fastball, Curveball, etc.).
- CLUMPD Application http://legion.stat.cmu.edu:3838/CLUMPD-server/

Baseball and Pitcher Background

- Pitcher's purpose: Make the batter miss or hit poorly.
- Pitches vary in velocity, top-spin, and side-spin.

Spectrum of Pitches:

	Fastball	Change-Up	Slider	Curveball	\ldots
Speed	Fastest	med	med	low	\ldots
Movement	Low	med-low	med-high	high	\ldots

Different pitchers throw different combinations of pitch types

- Pitchers throw different sets of pitch types depending on their role on the team, arm strength, ability, etc.
- Example: starting pitcher versus relief pitcher.
- Barry Zito (Starting Pitcher) throws a four-seam fastball, sinker, changeup, curveball, and slider.
- Craig Kimbrel (Relief Pitcher) throws a four-seam fastball and curveball.

Pitch type is unknown to batter

- Pitcher's team determines what pitch type will be thrown.
- Batter doesn't know what type of pitch will be thrown.
- No official record of pitch type thrown.

Identifying pitch types

- If each pitch type is known, we can improve measurement of pitcher and batter performance, predict future injury, and analyze other baseball research questions.
- Identify pitch types with velocity, side-spin, and top-spin.

PITCHf/x and Data

- PITCHf/x:
- A system for recording data on pitches thrown.
- PITCHf/x used by Major League Baseball since 2006.
- 30+ variables: velocity, release point, acceleration, etc.
- 2008 - 2013: 1000+ pitchers (100-15,000 pitches each)
- Back/side spin derived from PITCHf/x data (Nathan 2007).

Pitcher	Start Speed (mph)	Top Spin (rps)	Side Spin (rps)	Label	\ldots
Barry Zito	89.70	-84.59	56.17	Four-seam	\ldots
Barry Zito	70.80	50.39	-50.50	Curveball	\ldots
Tim Wakefield	75.20	-107.19	50.23	Four-seam	\ldots
Tim Wakefield	75.30	-113.89	46.10	Four-seam	\ldots

How to automatically identify all pitch types?

(1) Identify groups of pitches with similar characteristics using features of the PITCHf $/ \times$ database.
(2) Label each group with a pitch type (e.g. four-seam fastball).

MLB Current Method: Neural Networks Classification

- MLB uses proprietary labeled dataset and classification.
- Labeled dataset not publicly available, and may be inaccurate.

Barry Zito: Neural Network Classification

Pitch Name	Four-Seam	Two Seam	Cutter	Changeup	Curveball	Slider
Color	Red	Grey	Blue	Green	Black	Brown__

Identify groups of pitches with similar characteristics.

- Possible solution: Unsupervised learning (clustering)
- k-means
- hierarchical clustering
- model-based clustering with a Gaussian mixture model (MBC)
- Two-step approach:
- Cluster pitches for each individual pitcher.
- Three variables: velocity, top-spin, side-spin.
- Adapts to pitcher specific characteristics.
- Choose number of pitch types (clusters) for each pitcher.
- Develop algorithm to label clusters.

k-means

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{3}$ and C_{1}, \ldots, C_{K} clusters with μ_{k} for each cluster.

$$
\operatorname{argmin} \sum_{k=1}^{K} \sum_{i \in C_{k}}\left\|\bar{x}_{i}-\mu_{k}\right\|^{2}
$$

Barry Zito

4-Seam Fastball	2-Seam Fastball	Changeup	Slider	Curveball
Black	Red	Green	Blue	Light Blue $=\mathrm{E}$

- Clustering

Average Linkage (out-performs complete and single)

Let N represents the number of observations in clusters A and B , and d represents the individual pairwise dissimilarities. The distance between clusters A and B :

$$
\operatorname{dist}(A, B)=\frac{1}{N_{A} N_{B}} \sum_{i \varepsilon A i^{\prime} \varepsilon B} d_{i i^{\prime}}
$$

Barry Zito: Average Linkage

Model-Based Clustering with Gaussian mixture model

A multivariate Gaussian model for each pitcher profile is intuitive.

- Each pitch has a mean value for desired speed and spin.
- The resulting pitches are noisy, both in the pitchers delivery and due to other external factors, such as wind.
- The resulting noisy pattern forms a hyper-ellipsoid.

$$
\begin{array}{r}
y_{i} \mid c_{i}, \mu_{k}, \Sigma_{k} \sim N_{3}\left(\mu_{k}, \Sigma_{k}\right) \quad f(y ; K)=\sum_{k=1}^{K} f_{k}\left(y_{i} \mid c_{i}\right) \pi(k) \\
\operatorname{BIC}(\mathrm{K})=-2 \log (\hat{f}(Y ; K))+g(K, d) \cdot \log (n)
\end{array}
$$

where $\hat{f}(Y)$ is the likelihood for K compoments, and $g(K, d) \cdot \log (n)$ is the penalty term.

Model-Based Clustering with BIC

MBC Barry Zito: Original BIC

Choosing number of pitch types (clusters)

- Prior knowledge: clustering variables should be uncorrelated.
- Velocity, side and top-spin should be uncorrelated within clusters.
- We develop $B I C_{\text {adj }}$: Penalizes for high intra-cluster correlation.

$$
B I C_{\mathrm{adj}}(K)=B I C(K)+\lambda * \sum_{k=1}^{K} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} \log \left|r_{k i j}\right|
$$

- K is the number of clusters, d is the number of variables, and r is correlation.
- λ chosen via cross-validation (2010 as training data, 2011 as test data).

Model-Based Clustering with $B I C_{\text {adj }}$ CLUMPD

MBC Barry Zito: Adjusted BIC

Pitch Name	Four-Seam	Sinker	Changeup	Curveball	Slider
Color	Red	Light Blue	Green	Black	Brown

Result of MBC: Identify pitch evolution across time

CLUMPD

Pitch Name	4-Seam Fastball	Sinker	Cutter	Changeup	Curveball 2010	Curveball 2011
Color	Red	Light Blue	Blue	Green	Black	Purple

Comparing $B I C$ and $B I C_{\text {adj }}$

- Used both criterions on all pitchers (1051 pitchers).
- Randomly select 50 pitchers:
- All 50 cases $B I C_{\text {adj }}$ out-performs BIC based on visual inspection.
- In 46 of 50 pitchers, BIC chooses the maximum allowed number of clusters.
- $B I C_{\text {adj }}$ out-performs $B I C$ in this application.

Develop Labeling System for Clusters

Original Method:

- Heuristic decision tree algorithm to label clusters with typical pitch types (Fastball, Curveball, etc.)

New Method:

- Split each clustering space into 8 groups and label cluster based on where they fall.
- Labels clusters off of pitch characteristics, not pitcher intent.
- Types of pitches:

Fast Rise (Fastball), Slow Drop (Curveball), Slow Left (Slider), etc.

- Feedback and suggestions?

CLUMPD Application

CLUMPD

Conclusions

- New criterion for choosing the number of clusters.
- $B I C_{\text {adj }}$ factors in intra-cluster correlation structure.
- New method for MLB pitch type clustering and classification.
- $B I C_{\text {adj }}$ and MBC are intuitive models for PITCHf $/ x$ data.
- Pitch type labeling system.
- Developed pitch classification application that updates daily.

Current and Future Work

- Will be available on FanGraphs.
- Currently fine-tuning and updating CLUMPD method and application.
- Explore new baseball applications using clustering results.

Contact Information:
Email: mpane@andrew.cmu.edu
Version of paper: http://repository.cmu.edu/hsshonors/
CLUMPD Prototype: http://legion.stat.cmu.edu:3838/

- Try out application. Email me if you have any questions or suggestions.

