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The Fundamental Problem

Game #2022091108 Play #2962
(11:52) (No Huddle, Shotgun) S.Barkley right end to NYG 39 for -6 yards (J.Simmons).
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= St e Who gets credit for this tackle?
‘ e Traditional metrics: Only the tackler gets
2 credit
e Reality: Multiple defenders contributed
causally to the outcome
N A i e The Question: How do we measure
boe what doesn't show up in the box score?
¢ 0@ $ e Goal: Use tracking data to answer
“’5@?‘15“’555 ————————— T counterfactual questions that help us

‘ better identify the contributions of each
@ player



NFL Player Tracking Data

« 22 players tracked at 10 Hz

. (X, y) coordinates, velocity, acceleration, direction, and orientation

. 2024 NFL Big Data Bowl focused on measuring tackling performance
. Weeks 1-9 of 2022 Season



Supervised Learning vs. Causal Inference

Supervised Learning Asks: "What will happen?" Causal Inference Asks: "What would happen if...?"
e Prediction-focused: Given player positions, predict e Counterfactual-focused: What if this defender didn't
EPA outcome make the tackle?
e Correlation-based: Finds patterns in data e Causation-based: Isolates true cause-and-effect
e Goal: Minimize prediction error e (Goal: Estimate treatment effects
Supervised Learning Problems: Causal Inference Advantages:
e Confuses correlation with causation e Isolates individual contributions
e Biased toward high-volume tacklers e Accounts for situational context
Can't separate skill from opportunity e Separates player effect from team/scheme effects

Bottom Line: Prediction # Attribution. For
estimating player contribution, we need causal
understanding, not just predictive accuracy.



The Defensive Attribution Problem

Traditional: "Player A: 8 tackles
Player B: 2 tackles
Who is better?
The Challenge:

e Defensive value is largely invisible in traditional metrics
e Coordination and positioning matter more than final contact
e Counterfactual question: "What would have happened without this defender?"



Limitations of ML Residuals for Player Attribution

Common Approach:

e Train ML model to predict EPA or some other target from
features
Use residuals as "unexplained performance"
Attribute residuals to individual players

Why This Fails in Football:
1. Confounding Problem:

e Residuals capture unexplained variance, not causal
effects
e High residuals may reflect favorable situations

2. No Counterfactual Framework:

Residuals ask: "What did we fail to predict?"
Causal inference asks: "What would happen without this
player?"

e Fundamentally different questions

3. Interference Contamination:

ML residuals mix individual skill with teammate effects

e (Can't separate "player A is good" from "player A benefits
from player B"

e  Coordination effects get misattributed to individuals

4. Selection Bias:

e  Players in different situations generate different residual
patterns
No mechanism to ensure fair comparisons
Apples-to-oranges problem

Real Example:

e  Suppose Aaron Donald gets +0.3 EPA residual

e |s this because: (a) He's elite, or (b) Offense was already
disrupted by teammates?

e Residuals can't distinguish between these

Bottom Line: Residuals measure prediction errors, not causal
contributions. Attribution requires explicit counterfactual modeling.



Why Current Defensive Metrics Fail

e Tackle counts — Miss anticipatory positioning

e Correlation-based models — Cannot answer "What if?"
guestions

e \WVe need causal inference, not just correlation



Why Standard Approaches Fail

Dynamic Interference in Football Defense

Otserve SUTVA viclations and interforence effects in real-8me (10 FPS)

The SUTVA Problem in
Why This Breaks Traditional Causal Inference Football:

One defender's treatment affects others’ potential outcomes. In traditional causal inference, we

nssmeTumoncumrs(ma!rmn'.doesn‘lnﬂec!nnol.herumr‘soulm(S:ab(oUmlTreamrl. . Stable Unit Treatment Value
Vale mption).
Assumption
e Traditional causal inference
Dynamic Confounding aSSUmeS unitS don't
Optimal actions change based on leammates’ dacisions, The "best" action for a defender . .
depends on what their leammates are doing, creating time-varying confounding, Interfere Wlth each O‘ther
e ——— e In football: Defenders

coordinate extensively

Dedisions made in frame { afect frame t+1 options. The sequence of decisions creates a
cascade efect where early cholces constrain later possiblities.




Multi-Agent Systems in Football

What is Multi-Agent?

e Traditional approach: Analyze each player independently
e Multi-agent approach: Model all 22 players simultaneously as interacting agents
e Each "agent" (player) influences and responds to others in real-time

Why Football Requires Multi-Agent Modeling:

The Coordination Problem:

e Defenders don't act in isolation - they coordinate responsibilities
e One defender's movement changes optimal actions for teammates
e Traditional methods assume independence (violates reality)



Three Types of Agent Interactions

1. Coordination: Defenders work together (coverage schemes, gap assignments)
2. Interference: One defender's action affects teammate's effectiveness
3. Substitution: Defenders compensate when teammates are out of position

Technical Implementation:

e Transformer attention mechanisms learn which players influence each other
e Spatial relationships captured through learned attention weights
e Temporal dynamics model how interactions evolve during play

Key Insight: Football defense is a complex adaptive system where individual value emerges
from collective behavior

Analogy: Like modeling a flock of birds - individual flight patterns depend on the entire group,
not just individual bird characteristics



Our Causal Framework

Treatment: Binary indicator - did defender i make a tackle?

Outcome: Expected Points Added (EPA) - how much did the
offense benefit?

Goal: Estimate E[Y|X] - E[Y1|X] = Expected Points Saved (EPS)
Key Innovation - Multi-Agent Modeling:

e  Transformer architecture processes all 22 players
simultaneously

e Attention mechanisms capture defender coordination
Explicit interference modeling: coordination + substitution +
competition effects

Player Features

Ballcarrier Features

Relational Features

Causal Directed Acyclic Graph (DAG) for NFL Tackling

IsTackler

Opponent Fe:

Game Context

Red arrow shows the causal effect being estimated (CATE)

EPA



Addressing Selection Bias

Problem: Defenders don't tackle randomly

MMD balancing: Match distributions across treatment groups

Adversarial training: Domain classifier can't distinguish T=0 vs T=1
Representation equilibrium: Similar covariates — similar representations
Doubly robust estimation: Combines propensity scores + outcome modeling
Protection: Consistent estimates even if one model component is wrong

Result: Creates "apples-to-apples" comparisons for valid causal inference



Play Example: Tackle Behind Line of Scrimmage

Frame-Level EPS: Tackle Behind the Line of Scrimmage

Barkley Tackled Behind the Line: Simmons Primary Contributor EPS For Defenders
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Play Setup: Saquon Barkley tackled by
Jeffery Simmons for 6-yard loss

Traditional View: Only Simmons gets credit
for the tackle

Our Framework Reveals:

e  Simmons: Peak EPS of 0.66 (primary
contributor)

e Tart & Weaver: Consistent EPS of
0.25-0.35

e Interior defenders limited running
lanes, forced play toward Simmons

Key Insight: Framework captures
coordinated defensive effort, not just final
tackler

Value: Identifies "setup players" invisible to
traditional tackle-counting metrics



Play Example: Missed Tackle

Frame-Level EPS: Defensive Response to Missed Tackles

Wilson to Williams: Missed Tackle Analysis
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EPS For Defenders
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Play Setup: Russell Wilson to Javonte
Williams, 9-yard gain after breaking multiple
tackles
Failed Tacklers:
o  Jackson: -0.15 EPS (missed tackle
allowed offensive advantage)
o  Brooks: -0.35 EPS (failed attempt
extended the play)
Damage Control:
o  Barton: +0.40 EPS (best pursuit angle,
prevented larger gain)
o Nwosu: +0.05 EPS (neutral impact)
Cascading Effects:
o Woolen: -0.50 EPS, Coleman: -0.60
EPS, Diggs: -0.90 EPS
o  Values reflect positioning relative to
extended play development
Key Insight: Framework captures both failure
costs and recovery value in real-time



Validating Causal Models vs. Traditional ML
The Challenge: How do we know our causal estimates are right?
Traditional ML Validation (Not Sufficient for Causal Claims):

e Cross-validation accuracy, AUC, R?
e Tests prediction quality, not causal validity
e Can achieve high accuracy while missing causal relationships

Causal Model Validation (What We Need)

1. Synthetic Data with Known Ground Truth
2. Aggregation Tests

3. Sensitivity Analysis

4. Counterfactual Coherence:

Key Insight: Causal validity requires
fundamentally different validation than
predictive accuracy



Individual Case Study: Aaron Donald

EPA Distributions Under Treatment and Control: Aaron Donald

s [N EPA (No Tackle)
EPA (Tackle)
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mmm  Mean EPS: 0.268
* Null Effect (EPS = 0)
95% CI: [0.177, 0.360]

Effect size (Cohen's d): 0.93
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Expected Points Saved (EPS)

Sample: 38 tackle opportunities with clear counterfactual
distributions
Results:

o  Control condition: Mean EPA = 0.289

o  Treatment condition: Mean EPA = 0.021

o  Expected Points Saved: 0.268 + 0.091 (95% Cl)
Statistical Significance:

o p<0.001, large effect size (Cohen's d = 0.93)

o  Confidence interval [0.177, 0.360] well above

zero

Practical Impact: Each Donald tackle prevents ~0.27
expected points
Framework Validation: Clear separation between
treatment/control validates causal identification
Uncertainty: Confidence intervals reflect appropriate
statistical uncertainty for 38 plays



Top Defenders by EPS

Top 10 Defensive Ends (DE) by EPS Top 10 Defensive Tackles (DT) by EPS
Player Position EPS Tackles Player Position EPS Tackles
Aidan Hutchinson DE 19 Jeffery Simmons DT 22
Zach Allen DE 32 Dalvin Tomlinson DT 16
Maxx Crosby DE 40 Javon Hargrave DT 20
Myles Garrett DE 20 Jonathan Allen DT 26
Nick Bosa DE 22 Daron Payne DT 30
Al-Quadin Muhammad DE 18 Dexter Lawrence DT 24
Derrick Brown DE 0.288 42 Grady Jarrett DT 25
Trey Hendrickson DE 0.273 16 Leonard Williams DT 18
Josh Sweat DE 0.270 21 Fletcher Cox DT 0.269 16
Brandon Graham DE 0.268 12 Aaron Donald DT 0.268 29
Top 10 Outside Linebackers (OLB) by EPS Top 10 Inside Linebackers (ILB) by EPS
Player Position EPS Tackles Player Position EPS Tackles
Za'Darius Smith oLB 0.265 15 Jahlani Tavai LB 29
Haason Reddick oLB 0.258 14 Alex Anzalone LB 61
Danielle Hunter oLB 0.255 29 Ernest Jones ILB 54
Alex Highsmith oLB 0.220 23 T.J. Edwards LB 74
Khalil Mack oLB 0.216 20 Roquan Smith LB 82
Josh Allen oLB 0.211 20 Bobby Wagner LB 63
Brian Burns oLB 0.209 31 Fred Warner ILB 54
Travon Walker oLB 0.204 30 Frankie Luvu LB 44
T.J. Watt oLB 0.190 15 Malcolm Rodriguez LB 0.152 43
Preston Smith oLB 0.185 25 C.J. Mosley LB 0.148 87

Bold = All-Pro Selection | Underlined = Pro Bowl Selection



Mean Expected Points Added (EPA)

Team-Level Validation

Individual Defensive Value Aggregates to Team Performance

Correlation Analysis:
r =-0.6390
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Analysis: Mean individual EPS vs. mean
EPA for tacklers across all 32 NFL teams
Strong Correlation: r = -0.64, p < 0.001

e  Teams with better tacklers (higher
EPS) — better outcomes (lower
EPA)

e  Explains 41% of variance in
tackle-play outcomes

Key Validation: Individual causal
estimates capture genuine defensive
value, not statistical artifacts

Practical Implication: Framework reliably
distinguishes defensive value among
tacklers



Validation Results

Spatial Dependence of Defensive Interference Effects

A. Interference Correlation vs. Distance

B. Coordination Zones on Field

r=038

(05 yds)

Black dot: Reference defender

Close Distance Between Defenders (yards) Far Concentric zones: Interference strength
Distance Range Mean Correlation Sample Size 95% CI Interpretation
0-5 yards 052 8,734 [0.48, 0.56] Strong coordination
5-10 yards 038 12,421 [035,041] Moderate coordination
10-15 yards 023 9,856 [0.20, 0.26] ‘Weak coordination
15+ yards 0.11 6,243 [0.08, 0.14] Minimal interference
Spatial decay of defensive interference effects. (A) Correlation strength between defender effects d ically with distance, dating football's
tactical hasis on local ination. (B) C i ination zones d how interference operates primarily within 10-yard radius, with minimal

long-range effects. The reference defender (black dot) shows strongest dination with i

our multi-agent interference modeling approach over

(blue zone, r = 0.52) declining to near-independence beyond 15
yards (red zone, r = 0.11). Table: Statistical validation across 37,254 defender pairs confirms significant spatial dependence (all p < 0.001), providing empirical support for

SUTVA Violation Evidence:

e 68% of plays show significant interference
effects

e Mean interference magnitude: 0.127 (p <
0.001)

e Spatial decay: correlation drops from 0.52
(within 5 yards) to 0.11 (beyond 15 yards)



Positional Heterogeneity in Tackling Expected Points Saved:

Distributions of Expected Points Save
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Defensive Backs (CB, FS, SS):
o EPS distributions centered below zero with wide
spreads
) Context matters: Tackles occur after offense
gains advantage
o Three scenarios: successful offensive execution,
coverage breakdowns, pursuit situations
o Negative EPS reflects tackle context, not
performance quality
Front Seven (LB, DL):
o Positive EPS distributions (0.05-0.15 for LBs)
o Nose tackles highest: ~0.20 EPS (disrupting
interior runs)
o Tighter distributions = more predictable tackle
scenarios
Key Interpretation:
o Defensive backs' most valuable work (coverage,
prevention) invisible in tackle metrics
o When DBs tackle, offense has often already
succeeded
o Front seven tackles occur in more favorable
defensive contexts
Statistical Significance: p < 0.001 across position
comparisons, effect sizes 0.20-0.35



Methodological Validation

e Synthetic Data Validation (15,000 realistic plays):
o  Our framework: RMSE = 0.067, R? = 0.84, ranking correlation p = 0.81
o Traditional ML: RMSE = 0.142, R? = 0.52, ranking correlation p = 0.34
o Key insight: Prediction accuracy # causal accuracy

e Interference Effect Recovery:
o Accurately identifies spatial decay patterns (within 0.03 of ground truth)
o Traditional methods overestimate individual effects by 0.089 EPS
o Validates multi-agent coordination modeling

e Baseline Comparisons:
o  XGBoost predictive R*=0.78 vs. our 0.84
o But XGBoost causal correlation only r = 0.34 vs. our r = 0.81
o  Traditional ML biased toward high-volume tacklers
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Why Propensity Scores Matter:

) Essential for causal inference - estimate probability of "treatment”

(making a tackle)
° Must balance accuracy vs. overlap for valid causal estimates

Performance Metrics:

° Discrimination: AUC = 0.83 (training), 0.82 (validation)

° Post-Balancing: AUC drops to 0.62-0.64 (this is good!)

o Calibration: Strong alignment with diagonal (predicted = observed
probabilities)

Key Insight: Reduced post-balancing AUC indicates successful covariate
overlap

e  Adversarial training forced model to learn treatment-invariant features
° Creates "apples-to-apples" comparisons for causal estimation

Technical Note: ROC curves show we maintain sufficient discrimination while
achieving balance



Calibration Analysis

Calibration Assessment:

e  Cross-validation folds cluster tightly around diagonal
reference line

Calibration: Train Calibration: Validation

o
o

Observed probability
o
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—=— fold 0 10 —= foldo

—~ fold 1 y —— fold 1
= fold 2 / —=— fold 2
= fold 3 4 = fold 3
—=— fold 4 Al —=— fold 4

L xey 4 084 ___ yoy

e  Training: Minimal deviation from perfect calibration (x=y line)
e  Validation: Slight overconfidence at probability extremes
only

o
o

Why This Matters:

Observed probability
o
s

e  Well-calibrated propensity scores — reliable uncertainty
quantification

e  Consistent across folds — stable generalization properties

e  Critical for doubly robust estimation validity

0.2

0.0

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability Predicted probability

Practical Implication: Model produces honest probability
estimates suitable for high-stakes personnel decisions



Sensitivity Analysis - Testing Robustness

Rosenbaum Bounds Sensitivity Analysis for Hidden Bias Assessment

A. P-value Bounds vs. I

—
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Ir=1.0 r=1s =20 r=2.5

Red line: a = 0.05 significance threshold

B. Critical I Threshold

I'=2.1

Moderate Robustness
Unobserved confounder must
more than double treatment
odds to explain away effect

C. Treatment Effect Bounds

Blue band: Effect bounds under hidden bias
Red line: Null effect (EPS = 0)

Bounds remain above null up to I'=2.1

D. Robustness Assessment

Hidden bias tolerance: 2.1x

Interpretation: Unobserved
confounder must increase treatment
odds by 110% (factor of 2.1) while strongly
affecting outcomes to eliminate
significance

Practical meaning: Reasonable
protection against plausible
sources of bias in football data

Rosenbaum bounds analysis for sensitivity to hidden bias. (A) P-value bounds evolution as sensitivity parameter I
increases, showing degradation of statistical significance with stronger assumed hidden bias. (B) Critical threshold I' =
2.1 where upper p-value bound crosses a = 0.05, indicating moderate robustness on the spectrum from fragile (I' = 1.1)
to very robust (I' > 5.0). (C) Treatment effect confidence bounds remain above the null hypothesis across the range of
plausible hidden bias scenarios. (D) Overall robustness assessment suggesting reasonable but not exceptional

protection against unmeasured confounding in observational football data.

Why Sensitivity Analysis Matters:

° Observational data always has potential for unobserved confounding
° Must test how robust our causal claims are to hidden bias
° Multiple complementary approaches provide comprehensive assessment

1. Rosenbaum Bounds (I' = 2.1):

° Effects remain significant until sensitivity parameter reaches 2.1

° Unobserved confounder would need to double the odds of treatment
assignment

° AND simultaneously affect outcomes to explain away our results

° Interpretation: Moderate robustness to hidden bias

2. E-Value Assessment:

° Point estimate E-value = 2.8, confidence interval E-value = 1.9

° Unobserved confounder needs 2.8x association with both treatment and
outcome

° Higher than typical "nuisance" confounders in sports analytics

3. Placebo Testing:
° Applied method to outcomes that shouldn't be affected by tackles

° All placebo effects near zero: mean = 0.008 + 0.003
° No spurious patterns detected (p > 0.05)



Conclusion - Beyond Correlation to Causation

First multi-agent causal inference framework for individual defensive evaluation in football
Explicit SUTVA modeling captures 68% of plays with significant interference effects
Multi-agent transformers handle complex 22-player interactions

Doubly robust estimation protects against model misspecification

Key Findings:

Traditional metrics systematically undervalue coordinated defenders
0.084 EPS bias reduction compared to independence assumptions
Synthetic validation: Our method r = 0.81 vs. supervised learning r = 0.34

o
([
(]
e Team-level validation: Individual estimates aggregate meaningfully (r = -0.64)



Broader Impact

Why This Matters Beyond Football:

e Demonstrates causal inference in complex multi-agent systems
e Addresses interference effects common in team settings
e Template for "attribution problems" in other domains

Practical Applications:

e Player evaluation and contract decisions
e Defensive scheme optimization



Limitations & Future Work

Current Limitations:

e Single season data (2022) limits generalizability
e Moderate sensitivity to unmeasured confounding
e Binary treatment definition simplifies continuous defensive involvement

Future Directions:

e Multi-season validation
e Integration with offensive player modeling
e Extension to other team sports



Any Questions?



Backup Slides

The Problem: Traditional causal inference assumes
defenders act independently

e Reality: Football defense is highly
coordinated

e  SUTVA Violation: One defender's action
changes teammates' effectiveness

Three Types of Interference We Model:
1. Coordination Effects (C_ij,t):

e Formula: Distance decay x embedding
similarity x relational features

e Football Example: LB and SS covering
same zone move in sync to close passing
lane

e Mathematical: Nearby defenders (< 5
yards) show correlation r = 0.52

2. Direct Interference (I_i,t):

° Formula: Weighted sum of teammate actions x spatial decay
° Football Example: DE forces RB inside — LB's tackle becomes easier
° Effect: DE's action directly improves LB's success probability

3. Substitution Effects (S_i,t):

° Formula: Max teammate action x defender state
° Football Example: CB misses tackle — Safety steps in to cover
° Mechanism: Defenders compensate when teammates fail

Key Implementation:

° Attention weights learn which players influence each other
° Spatial decay ensures distant players have minimal interference
° Temporal dynamics capture how interference evolves during play

Validation: 68% of plays show significant interference (p < 0.001)



Transformers and Attention Mechanisms

What Are Transformers?

e  Neural network architecture that processes sequences (like player
movements over time)
e Key innovation: Attention mechanism learns which inputs are most Why Perfect for Football:
important
° Originally designed for language translation, now used across many domains ¢ Dynamic relationships: Attention

weights change as play evolves

e Complex interactions: Captures
Core Idea: Not all information is equally important 22-player interdependencies

e Scalable: Handles variable

The Attention Mechanism:

e  When analyzing a defender, pay more attention to nearby players

e  When predicting tackle success, focus on ball carrier distance and pursuit numbers of relevant players
angle . _ .
e Learns automatically which relationships matter most Bottom Line: Attention learns "what to

focus on when" - exactly what human

How Attention Works: football analysis requires.

1. Query-Key-Value System: Each player asks "who should | pay attention
to?"

2.  Attention Weights: Model learns importance scores (0-1) for each
relationship

3. Weighted Combination: Information gets combined based on learned
importance



Maximum Mean Discrepancy (MMD) Balancing

The Problem: Treatment and control groups have different feature distributions

° Tacklers vs. non-tacklers aren't comparable
° Example: Tacklers are systematically closer to ball carrier

What MMD Does:

° Measures distributional distance between treatment groups
° Goes beyond matching means - matches entire distributions
° Uses kernel methods to capture complex, nonlinear differences

Mathematical Intuition:

° MMD = ||u1 - o||?L (distance between distributions in high-dimensional
space)

° Zero MMD = identical distributions

° Goal: Minimize MMD to make groups statistically indistinguishable

Football Example:

° Before balancing: Tacklers average 3.2 yards from ball carrier vs. 8.7
yards for non-tacklers

° After MMD balancing: Both groups have similar distance distributions

° Result: Fair comparisons between similar situations

Implementation:

e Add MMD loss term to training
objective

e  Uses RBF kernels with multiple
bandwidths

e  Balances across all feature
dimensions simultaneously

Key Advantage: Ensures treatment/control
groups are comparable across all measured
confounders



Adversarial Training for Representation Balance

The Core Idea: Train two networks to compete against each other

e Main Network: Learns useful features for predicting EPA

e Domain Classifier: Tries to predict who made the tackle from those features

The Competition:

e Domain classifier gets better at detecting tacklers
e  Main network gets better at hiding tackle information
e  Equilibrium: Features predict outcomes but not treatment assignment

Why This Works:

e  Forces main network to learn "treatment-invariant" representations
e |f domain classifier can't distinguish T=0 vs T=1, then groups are balanced
e Gradient reversal: Main network actively tries to confuse the classifier

Multi-Scale Implementation:

e Run domain classifiers at 3 levels:
raw features, agent-encoded,
temporal-encoded

° Ensures no tackle information "leaks
through" at any representation level

Result: Balanced representations that enable
fair causal comparisons



Representation Equilibrium

The Principle: Similar defensive situations should produce similar representations

° Regardless of who actually made the tackle
° Ensures we're comparing "apples to apples"

How It Works:

° Two defenders in nearly identical situations get nearly identical feature representations
° Example: Two LBs, both 4 yards from RB, similar pursuit angles — similar embeddings
° Independence from treatment: Representation doesn't encode who tackled

Mathematical Formulation:

° For defenders i and j with similar covariates X_i = X_j
° Learned representations should satisfy: @(X_i) = @(X_j)
e EvenifT_i#T_j (different tackle outcomes)

Why Critical for Causality:

e Removes confounding from learned
features

e  Enables counterfactual reasoning:
"What if player A was in player B's
situation?"

e  Satisfies overlap assumption
required for causal identification

Validation: Check that representations are
balanced across treatment groups



Doubly Robust Estimation (AIPW)

The Insurance Policy: Protect against model misspecification

e Two models: Propensity score model + Outcome model
e Safety net: Consistent estimates if either model is correct
e Gold standard: Best performance when both models are correct

Why We Need This:

e  Complex football dynamics make perfect modeling impossible
e Traditional methods fail if key model assumptions are wrong
e Robustness: AIPW provides protection against modeling errors

The AIPW Formula:

e Combines observed outcomes with model predictions
e Weighs observations by inverse propensity scores
e Adds bias correction terms from outcome models

Two Components Working Together:

1.  Propensity scores: P(tackle | situation) - corrects for selection bias
2. Outcome models: E[EPA | tackle/no tackle] - predicts counterfactuals



Why Doubly Robust Protection Matters

The Modeling Challenge in Football:

e 22 players moving in 3D space over time
e  Complex interactions, incomplete information
e Impossible to perfectly model all relationships

Single Model Failures:
Propensity-Only Approach:

e Fails if we miss important factors affecting tackle probability
e Example: Miss coaching signals — biased tackle predictions

Outcome-Only Approach:

e Fails if we can't predict EPA accurately
e Example: Miss defensive scheme effects — wrong
counterfactuals

How AIPW Provides Protection:
Mathematical Intuition:

e AIPW = Weighted outcomes + Bias
corrections

e If propensity model fails — outcome
predictions compensate

e If outcome model fails — propensity
weighting compensates



