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The Fundamental Problem

● Who gets credit for this tackle?
● Traditional metrics: Only the tackler gets 

credit
● Reality: Multiple defenders contributed 

causally to the outcome
● The Question: How do we measure 

what doesn't show up in the box score?
● Goal: Use tracking data to answer 

counterfactual questions that help us 
better identify the contributions of each 
player



NFL Player Tracking Data

● 22 players tracked at 10 Hz
● (x, y) coordinates, velocity, acceleration, direction, and orientation
● 2024 NFL Big Data Bowl focused on measuring tackling performance
● Weeks 1-9 of 2022 Season



Supervised Learning vs. Causal Inference

Supervised Learning Asks: "What will happen?"

● Prediction-focused: Given player positions, predict 
EPA outcome

● Correlation-based: Finds patterns in data
● Goal: Minimize prediction error

Supervised Learning Problems:

● Confuses correlation with causation
● Biased toward high-volume tacklers
● Can't separate skill from opportunity

Causal Inference Asks: "What would happen if...?"

● Counterfactual-focused: What if this defender didn't 
make the tackle?

● Causation-based: Isolates true cause-and-effect
● Goal: Estimate treatment effects

Causal Inference Advantages:

● Isolates individual contributions
● Accounts for situational context
● Separates player effect from team/scheme effects

Bottom Line: Prediction ≠ Attribution. For 
estimating player contribution, we need causal 
understanding, not just predictive accuracy.



The Defensive Attribution Problem 

Traditional: "Player A: 8 tackles

     Player B: 2 tackles

     Who is better?

The Challenge:

● Defensive value is largely invisible in traditional metrics
● Coordination and positioning matter more than final contact
● Counterfactual question: "What would have happened without this defender?"



Limitations of ML Residuals for Player Attribution 
Common Approach:

● Train ML model to predict EPA or some other target from 
features

● Use residuals as "unexplained performance"
● Attribute residuals to individual players

Why This Fails in Football:

1. Confounding Problem:

● Residuals capture unexplained variance, not causal 
effects

● High residuals may reflect favorable situations

2. No Counterfactual Framework:

● Residuals ask: "What did we fail to predict?"
● Causal inference asks: "What would happen without this 

player?"
● Fundamentally different questions

3. Interference Contamination:

● ML residuals mix individual skill with teammate effects
● Can't separate "player A is good" from "player A benefits 

from player B"
● Coordination effects get misattributed to individuals

4. Selection Bias:

● Players in different situations generate different residual 
patterns

● No mechanism to ensure fair comparisons
● Apples-to-oranges problem

Real Example:

● Suppose Aaron Donald gets +0.3 EPA residual
● Is this because: (a) He's elite, or (b) Offense was already 

disrupted by teammates?
● Residuals can't distinguish between these

Bottom Line: Residuals measure prediction errors, not causal 
contributions. Attribution requires explicit counterfactual modeling.



Why Current Defensive Metrics Fail

● Tackle counts → Miss anticipatory positioning
● Correlation-based models → Cannot answer "What if?" 

questions
● We need causal inference, not just correlation



Why Standard Approaches Fail 

The SUTVA Problem in 
Football:

● Stable Unit Treatment Value 
Assumption

● Traditional causal inference 
assumes units don't 
interfere with each other

● In football: Defenders 
coordinate extensively



Multi-Agent Systems in Football 

What is Multi-Agent?

● Traditional approach: Analyze each player independently
● Multi-agent approach: Model all 22 players simultaneously as interacting agents
● Each "agent" (player) influences and responds to others in real-time

Why Football Requires Multi-Agent Modeling:

The Coordination Problem:

● Defenders don't act in isolation - they coordinate responsibilities
● One defender's movement changes optimal actions for teammates
● Traditional methods assume independence (violates reality)



Three Types of Agent Interactions
1. Coordination: Defenders work together (coverage schemes, gap assignments)
2. Interference: One defender's action affects teammate's effectiveness
3. Substitution: Defenders compensate when teammates are out of position

Technical Implementation:
● Transformer attention mechanisms learn which players influence each other
● Spatial relationships captured through learned attention weights
● Temporal dynamics model how interactions evolve during play

Key Insight: Football defense is a complex adaptive system where individual value emerges 
from collective behavior

Analogy: Like modeling a flock of birds - individual flight patterns depend on the entire group, 
not just individual bird characteristics



Our Causal Framework
Treatment: Binary indicator - did defender i make a tackle? 

Outcome: Expected Points Added (EPA) - how much did the 
offense benefit? 

Goal: Estimate E[Y₀|X] - E[Y₁|X] = Expected Points Saved (EPS)

Key Innovation - Multi-Agent Modeling:

● Transformer architecture processes all 22 players 
simultaneously

● Attention mechanisms capture defender coordination
● Explicit interference modeling: coordination + substitution + 

competition effects



Addressing Selection Bias

Problem: Defenders don't tackle randomly

● MMD balancing: Match distributions across treatment groups
● Adversarial training: Domain classifier can't distinguish T=0 vs T=1
● Representation equilibrium: Similar covariates → similar representations
● Doubly robust estimation: Combines propensity scores + outcome modeling
● Protection: Consistent estimates even if one model component is wrong

Result: Creates "apples-to-apples" comparisons for valid causal inference



Play Example: Tackle Behind Line of Scrimmage

Play Setup: Saquon Barkley tackled by 
Jeffery Simmons for 6-yard loss
Traditional View: Only Simmons gets credit 
for the tackle
Our Framework Reveals:

● Simmons: Peak EPS of 0.66 (primary 
contributor)

● Tart & Weaver: Consistent EPS of 
0.25-0.35

● Interior defenders limited running 
lanes, forced play toward Simmons

Key Insight: Framework captures 
coordinated defensive effort, not just final 
tackler
Value: Identifies "setup players" invisible to 
traditional tackle-counting metrics



Play Example: Missed Tackle
● Play Setup: Russell Wilson to Javonte 

Williams, 9-yard gain after breaking multiple 
tackles

● Failed Tacklers:
○ Jackson: -0.15 EPS (missed tackle 

allowed offensive advantage)
○ Brooks: -0.35 EPS (failed attempt 

extended the play)
● Damage Control:

○ Barton: +0.40 EPS (best pursuit angle, 
prevented larger gain)

○ Nwosu: +0.05 EPS (neutral impact)
● Cascading Effects:

○ Woolen: -0.50 EPS, Coleman: -0.60 
EPS, Diggs: -0.90 EPS

○ Values reflect positioning relative to 
extended play development

● Key Insight: Framework captures both failure 
costs and recovery value in real-time



Validating Causal Models vs. Traditional ML 
The Challenge: How do we know our causal estimates are right?

Traditional ML Validation (Not Sufficient for Causal Claims):

● Cross-validation accuracy, AUC, R²
● Tests prediction quality, not causal validity
● Can achieve high accuracy while missing causal relationships

Causal Model Validation (What We Need)

1. Synthetic Data with Known Ground Truth

2. Aggregation Tests

3. Sensitivity Analysis

4. Counterfactual Coherence:

Key Insight: Causal validity requires 
fundamentally different validation than 
predictive accuracy



Individual Case Study: Aaron Donald

● Sample: 38 tackle opportunities with clear counterfactual 
distributions

● Results:
○ Control condition: Mean EPA = 0.289
○ Treatment condition: Mean EPA = 0.021
○ Expected Points Saved: 0.268 ± 0.091 (95% CI)

● Statistical Significance:
○ p < 0.001, large effect size (Cohen's d = 0.93)
○ Confidence interval [0.177, 0.360] well above 

zero
● Practical Impact: Each Donald tackle prevents ~0.27 

expected points
● Framework Validation: Clear separation between 

treatment/control validates causal identification
● Uncertainty: Confidence intervals reflect appropriate 

statistical uncertainty for 38 plays



Top Defenders by EPS



Team-Level Validation

Analysis: Mean individual EPS vs. mean 
EPA for tacklers across all 32 NFL teams
Strong Correlation: r = -0.64, p < 0.001

● Teams with better tacklers (higher 
EPS) → better outcomes (lower 
EPA)

● Explains 41% of variance in 
tackle-play outcomes

Key Validation: Individual causal 
estimates capture genuine defensive 
value, not statistical artifacts

Practical Implication: Framework reliably 
distinguishes defensive value among 
tacklers



Validation Results 

SUTVA Violation Evidence:

● 68% of plays show significant interference 
effects

● Mean interference magnitude: 0.127 (p < 
0.001)

● Spatial decay: correlation drops from 0.52 
(within 5 yards) to 0.11 (beyond 15 yards)



Positional Heterogeneity in Tackling Expected Points Saved:

● Defensive Backs (CB, FS, SS):
○ EPS distributions centered below zero with wide 

spreads
○ Context matters: Tackles occur after offense 

gains advantage
○ Three scenarios: successful offensive execution, 

coverage breakdowns, pursuit situations
○ Negative EPS reflects tackle context, not 

performance quality
● Front Seven (LB, DL):

○ Positive EPS distributions (0.05-0.15 for LBs)
○ Nose tackles highest: ~0.20 EPS (disrupting 

interior runs)
○ Tighter distributions = more predictable tackle 

scenarios
● Key Interpretation:

○ Defensive backs' most valuable work (coverage, 
prevention) invisible in tackle metrics

○ When DBs tackle, offense has often already 
succeeded

○ Front seven tackles occur in more favorable 
defensive contexts

● Statistical Significance: p < 0.001 across position 
comparisons, effect sizes 0.20-0.35



Methodological Validation

● Synthetic Data Validation (15,000 realistic plays):
○ Our framework: RMSE = 0.067, R² = 0.84, ranking correlation ρ = 0.81
○ Traditional ML: RMSE = 0.142, R² = 0.52, ranking correlation ρ = 0.34
○ Key insight: Prediction accuracy ≠ causal accuracy

● Interference Effect Recovery:
○ Accurately identifies spatial decay patterns (within 0.03 of ground truth)
○ Traditional methods overestimate individual effects by 0.089 EPS
○ Validates multi-agent coordination modeling

● Baseline Comparisons:
○ XGBoost predictive R² = 0.78 vs. our 0.84
○ But XGBoost causal correlation only r = 0.34 vs. our r = 0.81
○ Traditional ML biased toward high-volume tacklers



Propensity Score Performance

Why Propensity Scores Matter:

● Essential for causal inference - estimate probability of "treatment" 
(making a tackle)

● Must balance accuracy vs. overlap for valid causal estimates

Performance Metrics:

● Discrimination: AUC = 0.83 (training), 0.82 (validation)
● Post-Balancing: AUC drops to 0.62-0.64 (this is good!)
● Calibration: Strong alignment with diagonal (predicted = observed 

probabilities)

Key Insight: Reduced post-balancing AUC indicates successful covariate 
overlap

● Adversarial training forced model to learn treatment-invariant features
● Creates "apples-to-apples" comparisons for causal estimation

Technical Note: ROC curves show we maintain sufficient discrimination while 
achieving balance



Calibration Analysis

Calibration Assessment:

● Cross-validation folds cluster tightly around diagonal 
reference line

● Training: Minimal deviation from perfect calibration (x=y line)
● Validation: Slight overconfidence at probability extremes 

only

Why This Matters:

● Well-calibrated propensity scores → reliable uncertainty 
quantification

● Consistent across folds → stable generalization properties
● Critical for doubly robust estimation validity

Practical Implication: Model produces honest probability 
estimates suitable for high-stakes personnel decisions



Sensitivity Analysis - Testing Robustness
Why Sensitivity Analysis Matters:

● Observational data always has potential for unobserved confounding
● Must test how robust our causal claims are to hidden bias
● Multiple complementary approaches provide comprehensive assessment

1. Rosenbaum Bounds (Γ = 2.1):

● Effects remain significant until sensitivity parameter reaches 2.1
● Unobserved confounder would need to double the odds of treatment 

assignment
● AND simultaneously affect outcomes to explain away our results
● Interpretation: Moderate robustness to hidden bias

2. E-Value Assessment:

● Point estimate E-value = 2.8, confidence interval E-value = 1.9
● Unobserved confounder needs 2.8x association with both treatment and 

outcome
● Higher than typical "nuisance" confounders in sports analytics

3. Placebo Testing:

● Applied method to outcomes that shouldn't be affected by tackles
● All placebo effects near zero: mean = 0.008 ± 0.003
● No spurious patterns detected (p > 0.05)



Conclusion - Beyond Correlation to Causation 

● First multi-agent causal inference framework for individual defensive evaluation in football
● Explicit SUTVA modeling captures 68% of plays with significant interference effects
● Multi-agent transformers handle complex 22-player interactions
● Doubly robust estimation protects against model misspecification

Key Findings:

● Traditional metrics systematically undervalue coordinated defenders
● 0.084 EPS bias reduction compared to independence assumptions
● Synthetic validation: Our method r = 0.81 vs. supervised learning r = 0.34
● Team-level validation: Individual estimates aggregate meaningfully (r = -0.64)



Broader Impact

Why This Matters Beyond Football:

● Demonstrates causal inference in complex multi-agent systems
● Addresses interference effects common in team settings
● Template for "attribution problems" in other domains

Practical Applications:

● Player evaluation and contract decisions
● Defensive scheme optimization



Limitations & Future Work

Current Limitations:

● Single season data (2022) limits generalizability
● Moderate sensitivity to unmeasured confounding
● Binary treatment definition simplifies continuous defensive involvement

Future Directions:

● Multi-season validation
● Integration with offensive player modeling
● Extension to other team sports



Any Questions?



Backup Slides

The Problem: Traditional causal inference assumes 
defenders act independently

● Reality: Football defense is highly 
coordinated

● SUTVA Violation: One defender's action 
changes teammates' effectiveness

Three Types of Interference We Model:

1. Coordination Effects (C_ij,t):

● Formula: Distance decay × embedding 
similarity × relational features

● Football Example: LB and SS covering 
same zone move in sync to close passing 
lane

● Mathematical: Nearby defenders (< 5 
yards) show correlation r = 0.52

2. Direct Interference (I_i,t):

● Formula: Weighted sum of teammate actions × spatial decay
● Football Example: DE forces RB inside → LB's tackle becomes easier
● Effect: DE's action directly improves LB's success probability

3. Substitution Effects (S_i,t):

● Formula: Max teammate action × defender state
● Football Example: CB misses tackle → Safety steps in to cover
● Mechanism: Defenders compensate when teammates fail

Key Implementation:

● Attention weights learn which players influence each other
● Spatial decay ensures distant players have minimal interference
● Temporal dynamics capture how interference evolves during play

Validation: 68% of plays show significant interference (p < 0.001)



Transformers and Attention Mechanisms 
What Are Transformers?

● Neural network architecture that processes sequences (like player 
movements over time)

● Key innovation: Attention mechanism learns which inputs are most 
important

● Originally designed for language translation, now used across many domains

The Attention Mechanism:

Core Idea: Not all information is equally important

● When analyzing a defender, pay more attention to nearby players
● When predicting tackle success, focus on ball carrier distance and pursuit 

angle
● Learns automatically which relationships matter most

How Attention Works:

1. Query-Key-Value System: Each player asks "who should I pay attention 
to?"

2. Attention Weights: Model learns importance scores (0-1) for each 
relationship

3. Weighted Combination: Information gets combined based on learned 
importance

Why Perfect for Football:

● Dynamic relationships: Attention 
weights change as play evolves

● Complex interactions: Captures 
22-player interdependencies

● Scalable: Handles variable 
numbers of relevant players

Bottom Line: Attention learns "what to 
focus on when" - exactly what human 
football analysis requires.



Maximum Mean Discrepancy (MMD) Balancing
The Problem: Treatment and control groups have different feature distributions

● Tacklers vs. non-tacklers aren't comparable
● Example: Tacklers are systematically closer to ball carrier

What MMD Does:

● Measures distributional distance between treatment groups
● Goes beyond matching means - matches entire distributions
● Uses kernel methods to capture complex, nonlinear differences

Mathematical Intuition:

● MMD = ||μ₁ - μ₀||²ₕ (distance between distributions in high-dimensional 
space)

● Zero MMD = identical distributions
● Goal: Minimize MMD to make groups statistically indistinguishable

Football Example:

● Before balancing: Tacklers average 3.2 yards from ball carrier vs. 8.7 
yards for non-tacklers

● After MMD balancing: Both groups have similar distance distributions
● Result: Fair comparisons between similar situations

Implementation:

● Add MMD loss term to training 
objective

● Uses RBF kernels with multiple 
bandwidths

● Balances across all feature 
dimensions simultaneously

Key Advantage: Ensures treatment/control 
groups are comparable across all measured 
confounders



Adversarial Training for Representation Balance
The Core Idea: Train two networks to compete against each other

● Main Network: Learns useful features for predicting EPA
● Domain Classifier: Tries to predict who made the tackle from those features

The Competition:

● Domain classifier gets better at detecting tacklers
● Main network gets better at hiding tackle information
● Equilibrium: Features predict outcomes but not treatment assignment

Why This Works:

● Forces main network to learn "treatment-invariant" representations
● If domain classifier can't distinguish T=0 vs T=1, then groups are balanced
● Gradient reversal: Main network actively tries to confuse the classifier

Multi-Scale Implementation:

● Run domain classifiers at 3 levels: 
raw features, agent-encoded, 
temporal-encoded

● Ensures no tackle information "leaks 
through" at any representation level

Result: Balanced representations that enable 
fair causal comparisons



Representation Equilibrium
The Principle: Similar defensive situations should produce similar representations

● Regardless of who actually made the tackle
● Ensures we're comparing "apples to apples"

How It Works:

● Two defenders in nearly identical situations get nearly identical feature representations
● Example: Two LBs, both 4 yards from RB, similar pursuit angles → similar embeddings
● Independence from treatment: Representation doesn't encode who tackled

Mathematical Formulation:

● For defenders i and j with similar covariates X_i ≈ X_j
● Learned representations should satisfy: φ(X_i) ≈ φ(X_j)
● Even if T_i ≠ T_j (different tackle outcomes)

Why Critical for Causality:

● Removes confounding from learned 
features

● Enables counterfactual reasoning: 
"What if player A was in player B's 
situation?"

● Satisfies overlap assumption 
required for causal identification

Validation: Check that representations are 
balanced across treatment groups



Doubly Robust Estimation (AIPW)

The Insurance Policy: Protect against model misspecification

● Two models: Propensity score model + Outcome model
● Safety net: Consistent estimates if either model is correct
● Gold standard: Best performance when both models are correct

Why We Need This:

● Complex football dynamics make perfect modeling impossible
● Traditional methods fail if key model assumptions are wrong
● Robustness: AIPW provides protection against modeling errors

The AIPW Formula:

● Combines observed outcomes with model predictions
● Weighs observations by inverse propensity scores
● Adds bias correction terms from outcome models

Two Components Working Together:

1. Propensity scores: P(tackle | situation) - corrects for selection bias
2. Outcome models: E[EPA | tackle/no tackle] - predicts counterfactuals



Why Doubly Robust Protection Matters 
The Modeling Challenge in Football:

● 22 players moving in 3D space over time
● Complex interactions, incomplete information
● Impossible to perfectly model all relationships

Single Model Failures:

Propensity-Only Approach:

● Fails if we miss important factors affecting tackle probability
● Example: Miss coaching signals → biased tackle predictions

Outcome-Only Approach:

● Fails if we can't predict EPA accurately
● Example: Miss defensive scheme effects → wrong 

counterfactuals

How AIPW Provides Protection:

Mathematical Intuition:

● AIPW = Weighted outcomes + Bias 
corrections

● If propensity model fails → outcome 
predictions compensate

● If outcome model fails → propensity 
weighting compensates


