A Paradox of Blown Leads: Rethinking Win Probability in Team Sports

Jonathan Pipping and Abraham J. Wyner

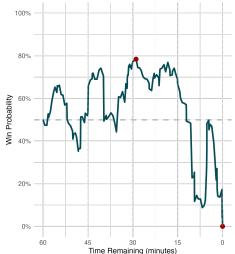
The Wharton School, University of Pennsylvania

NESSIS 2025

Case Study: Super Bowl LVII

- At the start of the 2nd half, the Chiefs trailed the Eagles 14–24 and faced a 3rd and 1 at their own 34
- At that point, the Eagles' projected win probability was 78.4%
- On the next play, Jerick McKinnon converted with a 14-yard run, and the Chiefs would go on to score, eventually winning 38–35.





Data via nflfastR

How Often Do Blown Leads Occur?

 We'd like to understand how rare it is to blow a lead of this magnitude!

How Often Do Blown Leads Occur?

- We'd like to understand how rare it is to blow a lead of this magnitude!
- Intuitively, most people would assume it happens very rarely (about 21.6% of the time), but maybe this is wrong.

How Often Do Blown Leads Occur?

- We'd like to understand how rare it is to blow a lead of this magnitude!
- Intuitively, most people would assume it happens very rarely (about 21.6% of the time), but maybe this is wrong.
- To investigate this, we formalize the question mathematically.

• The win probability of a team i at time t is a function of team strength S_i and game state (\mathcal{G}, t) . Symbolically,

$$W_i(t) = f(S_i, \mathcal{G}, t), \quad t \in [0, T]$$

• The win probability of a team i at time t is a function of team strength S_i and game state (\mathcal{G}, t) . Symbolically,

$$W_i(t) = f(S_i, \mathcal{G}, t), \quad t \in [0, T]$$

ullet In a two-team game between teams A and B, at any time t we have

$$W_A(t) + W_B(t) = 1$$

• The win probability of a team i at time t is a function of team strength S_i and game state (\mathcal{G}, t) . Symbolically,

$$W_i(t) = f(S_i, \mathcal{G}, t), \quad t \in [0, T]$$

ullet In a two-team game between teams A and B, at any time t we have

$$W_A(t) + W_B(t) = 1$$

• For the **eventual loser** ℓ , we know that $W_{\ell}(T) = 0$. So the quantity of interest (the maximum win prob. of the losing team) is given by the random variable

$$M_\ell = \max_t W_\ell(t)$$

• The win probability of a team i at time t is a function of team strength S_i and game state (\mathcal{G}, t) . Symbolically,

$$W_i(t) = f(S_i, \mathcal{G}, t), \quad t \in [0, T]$$

ullet In a two-team game between teams A and B, at any time t we have

$$W_A(t) + W_B(t) = 1$$

• For the **eventual loser** ℓ , we know that $W_{\ell}(T) = 0$. So the quantity of interest (the maximum win prob. of the losing team) is given by the random variable

$$M_{\ell} = \max_{t} W_{\ell}(t)$$

• We will investigate the distribution of M_{ℓ} as a function of the team strengths S_A and S_B .

• Estimating the win probability function *f* is difficult in practice.

- Estimating the win probability function *f* is difficult in practice.
 - ullet Game state (\mathcal{G},t) is multi-dimensional highly non-linear.

- Estimating the win probability function *f* is difficult in practice.
 - Game state (G, t) is multi-dimensional highly non-linear.
 - ullet Team strengths S_A and S_B are non-trivial to estimate.

- Estimating the win probability function *f* is difficult in practice.
 - Game state (G, t) is multi-dimensional highly non-linear.
 - Team strengths S_A and S_B are non-trivial to estimate.
- To simplify the problem, we specify a simple model to allow exact calculation of in-game win probabilities.

- Estimating the win probability function *f* is difficult in practice.
 - Game state (\mathcal{G}, t) is multi-dimensional highly non-linear.
 - Team strengths S_A and S_B are non-trivial to estimate.
- To simplify the problem, we specify a simple model to allow exact calculation of in-game win probabilities.
 - Each team has an equal number of possessions *N*.

- Estimating the win probability function *f* is difficult in practice.
 - Game state (\mathcal{G}, t) is multi-dimensional highly non-linear.
 - Team strengths S_A and S_B are non-trivial to estimate.
- To simplify the problem, we specify a simple model to allow exact calculation of in-game win probabilities.
 - Each team has an equal number of possessions N.
 - Team strengths p_A and p_B are fixed and correspond to each team's probability of scoring on a given possession. Ties are broken by a weighted coin flip (overtime).

- Estimating the win probability function *f* is difficult in practice.
 - Game state (\mathcal{G}, t) is multi-dimensional highly non-linear.
 - Team strengths S_A and S_B are non-trivial to estimate.
- To simplify the problem, we specify a simple model to allow exact calculation of in-game win probabilities.
 - Each team has an equal number of possessions N.
 - Team strengths p_A and p_B are fixed and correspond to each team's probability of scoring on a given possession. Ties are broken by a weighted coin flip (overtime).
- ullet So the win prob. for each possible game state (\mathcal{G},t) is given by

$$\mathsf{WP}_A(t) = \mathbb{P}\left[\mathsf{Binom}(n_t, p_A) + \mathsf{score}_A(t) > \mathsf{Binom}(n_t, p_B) + \mathsf{score}_B(t)\right] + \frac{p_A}{p_A + p_B} \mathbb{P}(\mathsf{A} \text{ and } \mathsf{B} \text{ tie})$$

where $n_t = N - t$ is the number of possessions remaining.

• For each set of parameters N, p_A, p_B , we do the following:

- For each set of parameters N, p_A, p_B , we do the following:
 - **①** Calculate the win prob. for each possible game state (\mathcal{G}, t)

- For each set of parameters N, p_A, p_B , we do the following:
 - Calculate the win prob. for each possible game state (\mathcal{G}, t)
 - ② Simulate 10,000 games between two teams.

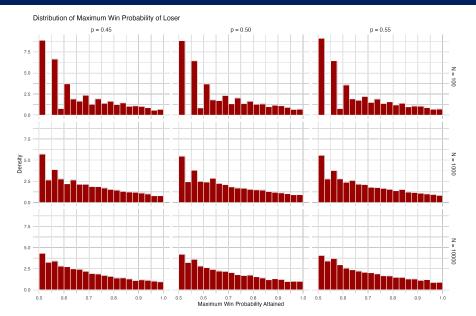
- For each set of parameters N, p_A, p_B , we do the following:
 - **①** Calculate the win prob. for each possible game state (\mathcal{G}, t)
 - Simulate 10,000 games between two teams.
 - **3** Extract the maximum win prob. attained by the eventual loser (M_{ℓ}) .

- For each set of parameters N, p_A, p_B , we do the following:
 - **①** Calculate the win prob. for each possible game state (\mathcal{G}, t)
 - 2 Simulate 10,000 games between two teams.
 - **3** Extract the maximum win prob. attained by the eventual loser (M_{ℓ}) .
- We consider the distribution of M_{ℓ} as N, p_A , and p_B vary.

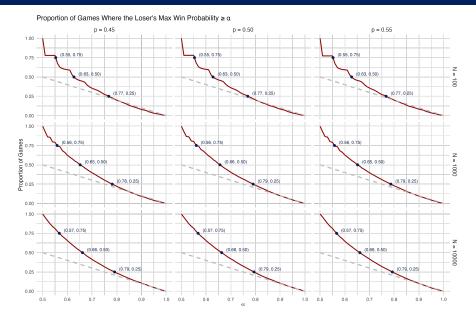
- For each set of parameters N, p_A, p_B , we do the following:
 - Calculate the win prob. for each possible game state (\mathcal{G}, t)
 - 2 Simulate 10,000 games between two teams.
 - **3** Extract the maximum win prob. attained by the eventual loser (M_{ℓ}) .
- We consider the distribution of M_{ℓ} as N, p_A , and p_B vary.
 - Case 1: $p_A = p_B$, f is symmetric across teams

- For each set of parameters N, p_A, p_B , we do the following:
 - Calculate the win prob. for each possible game state (\mathcal{G}, t)
 - 2 Simulate 10,000 games between two teams.
 - **3** Extract the maximum win prob. attained by the eventual loser (M_{ℓ}) .
- We consider the distribution of M_{ℓ} as N, p_A , and p_B vary.
 - Case 1: $p_A = p_B$, f is symmetric across teams
 - Case 2: $p_A \neq p_B$, f is asymmetric across teams

Symmetric Case: $p_A = p_B$



Symmetric Case: Threshold Plot



• When $p_A = p_B$, the support of M_ℓ is [0.5, 1).

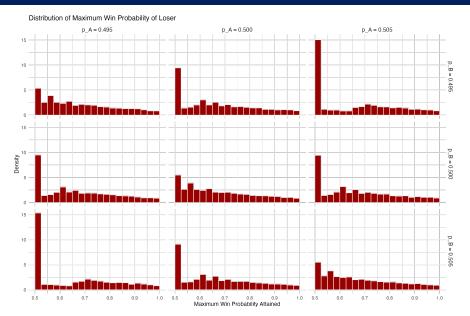
- When $p_A = p_B$, the support of M_ℓ is [0.5, 1).
- Holding N constant, the distribution of M_{ℓ} is identical for all values of $p_A = p_B$.

- When $p_A = p_B$, the support of M_ℓ is [0.5, 1).
- Holding N constant, the distribution of M_{ℓ} is identical for all values of $p_A = p_B$.
 - Implies that the distribution of M_{ℓ} may depend only on some measure of the difference in probabilities (e.g., $|p_A p_B|$, $\frac{p_A}{p_B}$, ...).

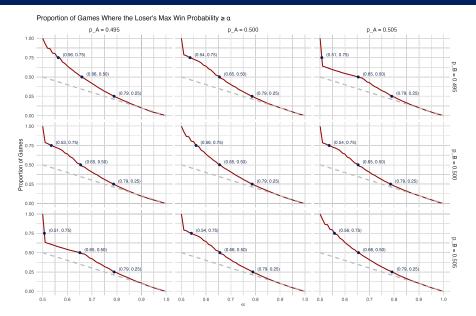
- When $p_A = p_B$, the support of M_ℓ is [0.5, 1).
- Holding N constant, the distribution of M_{ℓ} is identical for all values of $p_A = p_B$.
 - Implies that the distribution of M_{ℓ} may depend only on some measure of the difference in probabilities (e.g., $|p_A p_B|$, $\frac{p_A}{p_B}$, ...).
- Holding $p_A = p_B$ constant, the distribution of M_ℓ becomes less discrete and approaches a continuous limit as N increases.

- When $p_A = p_B$, the support of M_ℓ is [0.5, 1).
- Holding N constant, the distribution of M_{ℓ} is identical for all values of $p_A = p_B$.
 - Implies that the distribution of M_{ℓ} may depend only on some measure of the difference in probabilities (e.g., $|p_A p_B|$, $\frac{p_A}{p_B}$, ...).
- Holding $p_A = p_B$ constant, the distribution of M_ℓ becomes less discrete and approaches a continuous limit as N increases.
- In about half of all games, the losing team attains a win probability of at least 66% or more.

Asymmetric Case: $p_A \neq p_B$



Asymmetric Case: Threshold Plot



• When $p_A \neq p_B$, the support of M_ℓ is $[\min\{p_A, p_B\}, 1)$.

- When $p_A \neq p_B$, the support of M_ℓ is $[\min\{p_A, p_B\}, 1)$.
- Holding N constant, the distribution of M_ℓ is constant whenever $|p_A-p_B|$ is constant.

- When $p_A \neq p_B$, the support of M_ℓ is $[\min\{p_A, p_B\}, 1)$.
- Holding *N* constant, the distribution of M_{ℓ} is constant whenever $|p_A p_B|$ is constant.
 - Implies that the distribution of M_{ℓ} depends only on the absolute difference in probabilities $|p_A p_B|$.

- When $p_A \neq p_B$, the support of M_ℓ is $[\min\{p_A, p_B\}, 1)$.
- Holding N constant, the distribution of M_ℓ is constant whenever $|p_A p_B|$ is constant.
 - Implies that the distribution of M_{ℓ} depends only on the absolute difference in probabilities $|p_A p_B|$.
- Holding *N* constant, the distribution of M_{ℓ} becomes increasingly right-skewed over the support as $|p_A p_B|$ increases.

Asymmetric Case: Takeaways

- When $p_A \neq p_B$, the support of M_ℓ is $[\min\{p_A, p_B\}, 1)$.
- Holding N constant, the distribution of M_{ℓ} is constant whenever $|p_A p_B|$ is constant.
 - Implies that the distribution of M_{ℓ} depends only on the absolute difference in probabilities $|p_A p_B|$.
- Holding *N* constant, the distribution of M_{ℓ} becomes increasingly right-skewed over the support as $|p_A p_B|$ increases.
- Larger strength differentials decrease the proportion of games where the losing team attains a high win probability.

• We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N \ge 0\}}$ is the event that team A wins the game.

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N > 0\}}$ is the event that team A wins the game.
- Then we can define Team A's win probability at each time step k as a Doob martingale:

$$p_k = \mathbb{E}[Y \mid \mathcal{F}_k], \quad k = 0, \dots, N$$

- We hope to derive a closed-form solution for the distribution of M_ℓ in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N > 0\}}$ is the event that team A wins the game.
- Then we can define Team A's win probability at each time step k as a Doob martingale:

$$p_k = \mathbb{E}[Y \mid \mathcal{F}_k], \quad k = 0, \dots, N$$

• From here, define the following:

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N > 0\}}$ is the event that team A wins the game.
- Then we can define Team A's win probability at each time step k as a Doob martingale:

$$p_k = \mathbb{E}[Y \mid \mathcal{F}_k], \quad k = 0, \dots, N$$

- From here, define the following:
 - $M_A = \max_{0 \le k \le N} p_k$ is the maximum win probability team A attains.

- We hope to derive a closed-form solution for the distribution of M_ℓ in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N > 0\}}$ is the event that team A wins the game.
- Then we can define Team A's win probability at each time step k as a Doob martingale:

$$p_k = \mathbb{E}[Y \mid \mathcal{F}_k], \quad k = 0, \dots, N$$

- From here, define the following:
 - $M_A = \max_{0 \le k \le N} p_k$ is the maximum win probability team A attains.
 - $\tau_x = \min\{k \leq N : p_k \geq x\}$ is the first time p_k exceeds x.

- We hope to derive a closed-form solution for the distribution of M_{ℓ} in our simplified model. To do this, we define the following:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
 - $Y = \mathbf{1}_{\{X_N > 0\}}$ is the event that team A wins the game.
- Then we can define Team A's win probability at each time step k as a Doob martingale:

$$p_k = \mathbb{E}[Y \mid \mathcal{F}_k], \quad k = 0, \dots, N$$

- From here, define the following:
 - $M_A = \max_{0 \le k \le N} p_k$ is the maximum win probability team A attains.
 - $\tau_x = \min\{k \leq N : p_k \geq x\}$ is the first time p_k exceeds x.
- Since τ_x is a stopping time, we invoke the optional stopping theorem to derive the distribution of M_A .

• **Theorem 1:** The distribution of M_A satisfies:

$$F_{M_A}(x) \ge 1 - \frac{p_0}{x}, \quad x \in [p_0, 1)$$

with equality when $\mathbb{P}(\tau_x = N) = 0$ (continuous limits).¹

¹Note that M_A has a point mass of weight p_0 at 1.

• **Theorem 1:** The distribution of M_A satisfies:

$$F_{M_A}(x) \ge 1 - \frac{p_0}{x}, \quad x \in [p_0, 1)$$

with equality when $\mathbb{P}(\tau_x = N) = 0$ (continuous limits).¹

 Theorem 2: The conditional distribution of M_A given that team A loses satisfies:

$$F_{M_A|Y=0}(x) \ge 1 - \left(\frac{p_0}{1-p_0}\right) \cdot \left(\frac{1-x}{x}\right), \quad x \in [p_0, 1)$$

with equality when $\mathbb{P}(\tau_x = N) = 0$ (continuous limits)

¹Note that M_A has a point mass of weight p_0 at 1.

• What about the distribution for team B?

- What about the distribution for team *B*?
 - Recall that team B's path is just a reflection of team A's!

- What about the distribution for team *B*?
 - Recall that team B's path is just a reflection of team A's!
 - So M_B has a similar form to M_A , but with p_0 replaced by $1 p_0$.

- What about the distribution for team B?
 - Recall that team B's path is just a reflection of team A's!
 - So M_B has a similar form to M_A , but with p_0 replaced by $1 p_0$.
- So then what about the distribution of the **eventual** loser M_{ℓ} ?

- What about the distribution for team B?
 - Recall that team B's path is just a reflection of team A's!
 - So M_B has a similar form to M_A , but with p_0 replaced by $1 p_0$.
- So then what about the distribution of the **eventual** loser M_{ℓ} ?
 - This is a **mixture** of the distributions $(M_A|A \text{ loses})$ and $(M_B|B \text{ loses})$ with weights $(1 p_0)$ and p_0 , respectively.

- What about the distribution for team B?
 - Recall that team B's path is just a reflection of team A's!
 - So M_B has a similar form to M_A , but with p_0 replaced by $1 p_0$.
- So then what about the distribution of the **eventual** loser M_{ℓ} ?
 - This is a **mixture** of the distributions $(M_A|A \text{ loses})$ and $(M_B|B \text{ loses})$ with weights $(1 p_0)$ and p_0 , respectively.
 - But wait! In the region $[\min(p_0, 1 p_0), \max(p_0, 1 p_0))$, the distribution of M_ℓ comes entirely from the underdog! So we must define the distribution of M_ℓ piecewise.

- What about the distribution for team B?
 - Recall that team B's path is just a reflection of team A's!
 - So M_B has a similar form to M_A , but with p_0 replaced by $1 p_0$.
- So then what about the distribution of the **eventual** loser M_{ℓ} ?
 - This is a **mixture** of the distributions $(M_A|A \text{ loses})$ and $(M_B|B \text{ loses})$ with weights $(1 p_0)$ and p_0 , respectively.
 - But wait! In the region $[\min(p_0, 1 p_0), \max(p_0, 1 p_0))$, the distribution of M_ℓ comes entirely from the underdog! So we must define the distribution of M_ℓ piecewise.
- **Theorem 3:** Since team labels are arbitrary, let team A be the favorite $(p_0 \ge 0.5)$. Then the distribution of M_ℓ satisfies:

$$F_{M_{\ell}}(x) \geq egin{cases} 1 - rac{1 - p_0}{x} & ext{if } x \in [1 - p_0, p_0) \ 2 - rac{1}{x} & ext{if } x \in [p_0, 1) \end{cases}$$

with equality when $\mathbb{P}(\tau_x = N) = 0$ (continuous limits)

• The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.
 - Then $WP_A(0) = 0.5$ and $WP_A(1) = \{0, 1\}$, jumping the rest!

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.
 - Then $WP_A(0)=0.5$ and $WP_A(1)=\{0,1\}$, jumping the rest!
 - What we need to prevent this behavior is **continuous sample paths**, which prevents the process from jumping over levels.

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.
 - Then $WP_A(0) = 0.5$ and $WP_A(1) = \{0, 1\}$, jumping the rest!
 - What we need to prevent this behavior is continuous sample paths, which prevents the process from jumping over levels.
- How do we get continuous sample paths? By letting $N \to \infty$.

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.
 - Then $WP_A(0) = 0.5$ and $WP_A(1) = \{0, 1\}$, jumping the rest!
 - What we need to prevent this behavior is continuous sample paths, which prevents the process from jumping over levels.
- How do we get continuous sample paths? By letting $N \to \infty$.
 - In this limit, the process becomes continuous and we can derive exact closed-form expressions for the distributions of M_A , M_B , and M_ℓ .

- The inequalities in Theorems 1-3 are tight, but what if we want something stronger, like a density equality? What's the limitation?
- In discrete time, there are **finitely-many** levels for WP_A and WP_B , so the process can "jump over" level x at the final step.
 - For example, consider the simplest case: N = 1 and $p_0 = 0.5$.
 - Then $WP_A(0)=0.5$ and $WP_A(1)=\{0,1\}$, jumping the rest!
 - What we need to prevent this behavior is continuous sample paths, which prevents the process from jumping over levels.
- How do we get continuous sample paths? By letting $N \to \infty$.
 - In this limit, the process becomes continuous and we can derive exact closed-form expressions for the distributions of M_A , M_B , and M_ℓ .
 - In addition, **Donsker's Invariance Principle** allows us to approximate the scoring process X_k with a Brownian motion!

• We hope to derive a continuous closed-form for the distribution of M_{ℓ} in our simplified model. Like before, we have:

- We hope to derive a continuous closed-form for the distribution of M_ℓ in our simplified model. Like before, we have:
 - $X_k = \operatorname{score}_A(k) \operatorname{score}_B(k)$ is the score differential at time k.

- We hope to derive a continuous closed-form for the distribution of M_ℓ in our simplified model. Like before, we have:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.

- We hope to derive a continuous closed-form for the distribution of M_{ℓ} in our simplified model. Like before, we have:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
- Then define the following quantities:

- We hope to derive a continuous closed-form for the distribution of M_{ℓ} in our simplified model. Like before, we have:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
- Then define the following quantities:
 - $\mu = p_A p_B$ is the difference in scoring probabilities.

- We hope to derive a continuous closed-form for the distribution of M_ℓ in our simplified model. Like before, we have:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
- Then define the following quantities:
 - $\mu = p_A p_B$ is the difference in scoring probabilities.
 - $\sigma^2 = p_A(1 p_A) + p_B(1 p_B)$ is the variance of each step in the scoring process.

- We hope to derive a continuous closed-form for the distribution of M_ℓ in our simplified model. Like before, we have:
 - $X_k = \text{score}_A(k) \text{score}_B(k)$ is the score differential at time k.
 - $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$ is the set of information available at time k.
- Then define the following quantities:
 - $\mu = p_A p_B$ is the difference in scoring probabilities.
 - $\sigma^2 = p_A(1 p_A) + p_B(1 p_B)$ is the variance of each step in the scoring process.
- Then by Donsker's Invariance Principle, we have that

$$rac{X_{\lfloor Nt \rfloor}}{\sigma \sqrt{N}} \stackrel{d}{
ightarrow} B_t + \mu^* t, \quad \mu^* = rac{\sqrt{N} \, \mu}{\sigma}, \, \, t \in [0,1]$$

where B_t is standard Brownian motion.

• From here, note the following:

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$
- Now we can define Team A's win probability as a Doob martingale:

$$\rho_t = \mathbb{E}[Y \mid \mathcal{F}_t], \quad t \in [0, 1]$$

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$
- Now we can define Team A's win probability as a Doob martingale:

$$\rho_t = \mathbb{E}[Y \mid \mathcal{F}_t], \quad t \in [0, 1]$$

Then we can define the following quantities:

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$
- Now we can define Team A's win probability as a Doob martingale:

$$\rho_t = \mathbb{E}[Y \mid \mathcal{F}_t], \quad t \in [0, 1]$$

- Then we can define the following quantities:
 - $M = \sup_{0 \le t \le 1} p_t$ is the maximum win probability team A attains.

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$
- Now we can define Team A's win probability as a Doob martingale:

$$\rho_t = \mathbb{E}[Y \mid \mathcal{F}_t], \quad t \in [0, 1]$$

- Then we can define the following quantities:
 - $M = \sup_{0 \le t \le 1} p_t$ is the maximum win probability team A attains.
 - $\tau_x = \inf\{t \in [0,1] : p_t = x\}$ is the first time p_t exceeds x.

- From here, note the following:
 - The discrete terminal event $\{X_N \ge 0\}$ converges to $\{B_1 + \mu^* \ge 0\}$.
 - So $Y = \mathbf{1}_{\{B_1 + \mu^* > 0\}}$ is the event that team A wins the game.
 - $p_0 = \mathbb{P}(Y = 1) = \Phi(\mu^*).$
- Now we can define Team A's win probability as a Doob martingale:

$$\rho_t = \mathbb{E}[Y \mid \mathcal{F}_t], \quad t \in [0, 1]$$

- Then we can define the following quantities:
 - $M = \sup_{0 \le t \le 1} p_t$ is the maximum win probability team A attains.
 - $\tau_x = \inf\{t \in [0,1] : p_t = x\}$ is the first time p_t exceeds x.
- Then we invoke the optional stopping theorem and use properties of Brownian motion to derive the distribution of M_A , M_B , and M_ℓ .

• **Theorem 4:** The distribution of M_A satisfies:

$$F_{M_A}(x) = 1 - \frac{p_0}{x} = 1 - \frac{\Phi(\mu^*)}{x}, \quad x \in [\Phi(\mu^*), 1)$$

• **Theorem 4:** The distribution of M_A satisfies:

$$F_{M_A}(x) = 1 - \frac{p_0}{x} = 1 - \frac{\Phi(\mu^*)}{x}, \quad x \in [\Phi(\mu^*), 1)$$

 Theorem 5: The conditional distribution of M_A given that team A loses satisfies:

$$F_{M_A|Y=0}(x) = 1 - \left(\frac{p_0}{1 - p_0}\right) \cdot \left(\frac{1 - x}{x}\right), \quad x \in [p_0, 1)$$
$$= 1 - \left(\frac{\Phi(\mu^*)}{1 - \Phi(\mu^*)}\right) \cdot \left(\frac{1 - x}{x}\right), \quad x \in [\Phi(\mu^*), 1)$$

• What about the distribution for team B?

- What about the distribution for team *B*?
 - In the discrete case, we just replaced p_0 with $1 p_0$.

- What about the distribution for team B?
 - In the discrete case, we just replaced p_0 with $1 p_0$.
 - So in the continuous case, we just replace $\Phi(\mu^*)$ with $\Phi(-\mu^*)$.

- What about the distribution for team B?
 - In the discrete case, we just replaced p_0 with $1 p_0$.
 - So in the continuous case, we just replace $\Phi(\mu^*)$ with $\Phi(-\mu^*)$.
- We saw in the discrete case that the distribution of M_{ℓ} is a piecewise mixture. We use a similar logic to derive the distribution of M_{ℓ} .

- What about the distribution for team B?
 - In the discrete case, we just replaced p_0 with $1 p_0$.
 - So in the continuous case, we just replace $\Phi(\mu^*)$ with $\Phi(-\mu^*)$.
- We saw in the discrete case that the distribution of M_{ℓ} is a piecewise mixture. We use a similar logic to derive the distribution of M_{ℓ} .
- Theorem 6: Since team labels are arbitrary, let team A be the favorite $(\mu^* \geq 0)$. Then the distribution of M_ℓ satisfies

$$F_{M_{\ell}}(x) = egin{cases} 1 - rac{1 - p_0}{x} & ext{if } x \in [1 - p_0, p_0) \ 2 - rac{1}{x} & ext{if } x \in [p_0, 1) \end{cases}$$

where $p_0 = \Phi(\mu^*)$.

• In evenly-matched games, we have the following:

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.
- In unevenly-matched games, we have the following:

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.
- In unevenly-matched games, we have the following:
 - Starting win probabilities differ $(p_0 \neq 0.5)$.

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.
- In unevenly-matched games, we have the following:
 - Starting win probabilities differ ($p_0 \neq 0.5$).
 - M_{ℓ} is distributed **piecewise** over $x \in [p_0^{(dog)}, 1)$.

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.
- In unevenly-matched games, we have the following:
 - Starting win probabilities differ ($p_0 \neq 0.5$).
 - M_{ℓ} is distributed **piecewise** over $x \in [p_0^{(\text{dog})}, 1)$.
 - ullet From $[p_0^{(
 m dog)},p_0^{(
 m fav)})$, only the underdog's maxima contribute.

- In evenly-matched games, we have the following:
 - Each team's starting win probability (p_0) is 0.5.
 - $F_{M_{\ell}}(x) = 2 \frac{1}{x}$ uniformly over all $x \in [0.5, 1)$.
- In unevenly-matched games, we have the following:
 - Starting win probabilities differ ($p_0 \neq 0.5$).
 - M_{ℓ} is distributed **piecewise** over $x \in [p_0^{(dog)}, 1)$.
 - ullet From $[p_0^{(
 m dog)},p_0^{(
 m fav)})$, only the underdog's maxima contribute.
 - From $[p_0^{(fav)}, 1)$, both teams' maxima contribute.

• The math is clean, but it's still a major simplification of sports!

- The math is clean, but it's still a major simplification of sports!
 - Scoring often isn't binary!

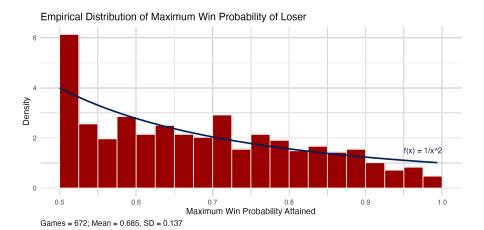
- The math is clean, but it's still a major simplification of sports!
 - Scoring often isn't binary!
 - True team scoring probabilities may vary throughout a game!

- The math is clean, but it's still a major simplification of sports!
 - Scoring often isn't binary!
 - True team scoring probabilities may vary throughout a game!
 - Teams often have an unequal number of possessions!

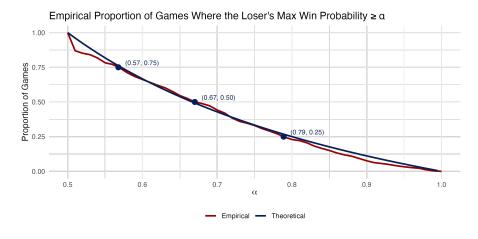
- The math is clean, but it's still a major simplification of sports!
 - Scoring often isn't binary!
 - True team scoring probabilities may vary throughout a game!
 - Teams often have an unequal number of possessions!
 - Weather, injuries, game strategy, and other external factors matter!

- The math is clean, but it's still a major simplification of sports!
 - Scoring often isn't binary!
 - True team scoring probabilities may vary throughout a game!
 - Teams often have an unequal number of possessions!
 - Weather, injuries, game strategy, and other external factors matter!
- Let's take a look at the distribution of M_{ℓ} for real-life games. . .

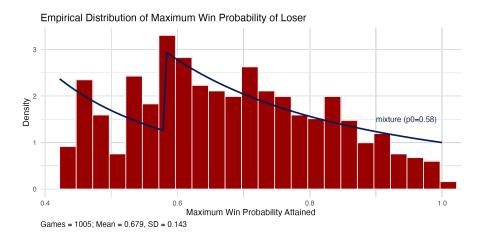
Evenly-Matched NFL Games (2002–2024, |Spread| < 2)



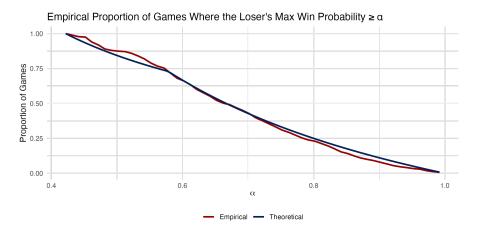
Evenly-Matched NFL Games (2002–2024, |Spread| < 2)



Unevenly-Matched NFL Games: 2002-2024, |Spread| = 3



Unevenly-Matched NFL Games: 2002-2024, |Spread| = 3



• Our solutions closely match the empirical distribution of the maximum win probability of the eventual loser $(M_{\ell})!$

- Our solutions closely match the empirical distribution of the maximum win probability of the eventual loser $(M_{\ell})!$
- Blown leads happen all the time, especially in even matchups!

- Our solutions closely match the empirical distribution of the maximum win probability of the eventual loser $(M_{\ell})!$
- Blown leads happen all the time, especially in even matchups!
- Conditioning on an eventual loss fundamentally changes the distribution of the maximum win probability attained.

 In Super Bowl LVII, the Eagles reached a maximum win probability of 78.4% before ultimately losing.

Conclusions

- In Super Bowl LVII, the Eagles reached a maximum win probability of 78.4% before ultimately losing.
- From this position (assuming a well-calibrated model) **it's true** that the Eagles only had a 21.6% chance of losing the game.

Conclusions

- In Super Bowl LVII, the Eagles reached a maximum win probability of 78.4% before ultimately losing.
- From this position (assuming a well-calibrated model) **it's true** that the Eagles only had a 21.6% chance of losing the game.
- However, the event that the eventual loser of this game reached 78.4% is **provably closer** to 30%.

Acknowledgements

- Special thanks to Professor Jiaoyang Huang, Dr. Paul Sabin, and Dr. Ryan Brill for their helpful feedback.
- All work supported by the Wharton Sports Analytics & Business Initiative (WSABI)

References

- Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Memoirs of the American Mathematical Society, 6.
- Doob, J. L. (1953). Stochastic Processes. New York: John Wiley & Sons.
- nflfastR: Carl, S. and Baldwin, B. (2025). nflfastR: Functions to Efficiently Access NFL Play by Play Data. R package version 5.1.0.9000. Available at https://www.nflfastr.com/.

• **Theorem 1:** When $p_A = p_B$, the cumulative distribution of M satisfies

$$F_M(x) \ge 1 - \frac{p_0}{x}, \quad x \in [p_0, 1)$$

with equality exactly when $\mathbb{P}(\tau_{\mathsf{x}} = \mathsf{N}) = 0$.

Proof of Theorem 1 (continued)

- If $x \le p_0$, then $\tau_x = 0$ a.s., so $M \ge x$ a.s. and $F_M(x) = 0$.
- For $x > p_0$, by the optional stopping theorem on the bounded martingale (p_k) at $\tau_x \wedge N$:

$$\mathbb{E}[p_{\tau_{\times} \wedge N}] = p_0$$

Decomposing this:

$$p_0 = \mathbb{E}[p_{\tau_x} \mathbf{1}_{\{\tau_x < N\}}] + \mathbb{E}[p_N \mathbf{1}_{\{\tau_x = N\}}]$$

• Since $p_{\tau_x} = x$ on $\{\tau_x < N\}$ and $p_N = 1$ on $\{\tau_x = N\}$:

$$p_0 = x \mathbb{P}(\tau_x < N) + \mathbb{P}(\tau_x = N)$$

Proof of Theorem 1 (continued)

• Since $\mathbb{P}(M \ge x) = \mathbb{P}(\tau_x < N) + \mathbb{P}(\tau_x = N)$:

$$p_0 = x \mathbb{P}(M \ge x) + (1 - x) \mathbb{P}(\tau_x = N)$$

• For x < 1, $\mathbb{P}(\tau_x = N) \ge 0$ and we have:

$$\mathbb{P}(M \geq x) \leq \frac{p_0}{x}, \quad x \in [p_0, 1)$$

with equality exactly when $\mathbb{P}(\tau_x = N) = 0$.

• When x=1, $\tau_x=N$ a.s., so:

$$\mathbb{P}(M \geq 1) = \mathbb{P}(M = 1) = p_0$$

• **Theorem 2:** When $p_A = p_B$, the cumulative distribution of M conditional on Y = 0 satisfies

$$F_{M|Y=0}(x) \ge 1 - \left(\frac{p_0}{1-p_0}\right) \cdot \left(\frac{1-x}{x}\right), \quad x \in [p_0, 1)$$

with equality exactly when $\mathbb{P}(\tau_x = N) = 0$.

Proof of Theorem 2 (continued)

• Decompose the event $\{M \ge x\}$:

$$\mathbb{P}(M \ge x) = \mathbb{P}(M \ge x, Y = 0) + \mathbb{P}(M \ge x, Y = 1)$$

• On $\{Y = 1\}$, $p_N = 1 \ge x$ a.s. So $\{M \ge x\} \cap \{Y = 1\} = \{Y = 1\}$:

$$\mathbb{P}(M \ge x) = \mathbb{P}(Y = 1) + \mathbb{P}(M \ge x, Y = 0)
= \mathbb{P}(Y = 1) + \mathbb{P}(Y = 0)\mathbb{P}(M \ge x \mid Y = 0)
= \rho_0 + (1 - \rho_0)\mathbb{P}(M \ge x \mid Y = 0)$$

- From Theorem 1: $\frac{p_0}{x} \ge p_0 + (1-p_0)\mathbb{P}(M \ge x \mid Y=0)$
- Solving for $\mathbb{P}(M \ge x \mid Y = 0)$:

$$\mathbb{P}(M \ge x \mid Y = 0) \le \left(\frac{p_0}{1 - p_0}\right) \cdot \left(\frac{1 - x}{x}\right)$$

with equality exactly when $\mathbb{P}(\tau_x = N) = 0$.

• **Theorem 3:** When $p_A = p_B$, the distribution of M_ℓ satisfies

$$F_{M_{\ell}}(x) \ge 2 - \frac{1}{x}, \quad x \in [0.5, 1)$$

with equality exactly when $\mathbb{P}(\tau_x = N) = 0$.

Proof of Theorem 3 (continued)

- Since $p_A = p_B$, we have $p_0 = 0.5$ and the mixture weights are equal.
- From Theorem 2, both conditional distributions are identical:

$$F_{M_A|Y=0}(x) = F_{M_B|Y=1}(x) \ge 1 - \left(\frac{0.5}{0.5}\right) \cdot \left(\frac{1-x}{x}\right) = 1 - \frac{1-x}{x}$$

• Since both teams have identical distributions, the mixture is simply:

$$F_{M_{\ell}}(x) \ge 0.5 \cdot F_{M_A|Y=0}(x) + 0.5 \cdot F_{M_B|Y=1}(x) = 1 - \frac{1-x}{x} = 2 - \frac{1}{x}$$

• **Theorem 4:** When $p_A \neq p_B$, the cumulative distribution of M satisfies

$$F_M(x) = 1 - \frac{p_0}{x} = 1 - \frac{\Phi(\mu^*)}{x}, \quad x \in [p_0, 1)$$

Proof of Theorem 4 (continued)

• By the optional stopping theorem on the bounded martingale (p_t) at $\tau_x \wedge 1$:

$$\mathbb{E}[p_{\tau_{\mathsf{x}} \wedge 1}] = p_0$$

Decomposing this:

$$p_0 = \mathbb{E}[p_{\tau_x} \mathbf{1}_{\{\tau_x < 1\}}] + \mathbb{E}[p_1 \mathbf{1}_{\{\tau_x = 1\}}]$$

• Since $p_{\tau_x} = x$ on $\{\tau_x < 1\}$ and $p_1 = 1$ on $\{\tau_x = 1\}$:

$$p_0 = x \mathbb{P}(\tau_x < 1) + \mathbb{P}(\tau_x = 1)$$

• Since $\mathbb{P}(M \ge x) = \mathbb{P}(\tau_x < 1) + \mathbb{P}(\tau_x = 1)$:

$$p_0 = x \mathbb{P}(M \ge x) + \mathbb{P}(\tau_x = 1)$$

Proof of Theorem 4 (continued)

• For x < 1, $\mathbb{P}(\tau_x = 1) = 0$ (continuous paths), so:

$$\mathbb{P}(M \ge x) = \frac{p_0}{x} = \frac{\Phi(\mu^*)}{x}, \quad x \in [p_0, 1)$$

• When x = 1, $\tau_x = 1$ a.s., so:

$$\mathbb{P}(M \geq 1) = \mathbb{P}(M = 1) = \rho_0 = \Phi(\mu^*)$$

• **Theorem 5:** When $p_A \neq p_B$, the conditional distribution of M given Y = 0 satisfies

$$F_{M|Y=0}(x) = 1 - \left(\frac{p_0}{1 - p_0}\right) \cdot \left(\frac{1 - x}{x}\right), \quad x \in [p_0, 1)$$

where $p_0 = \Phi(\mu^*)$ and M = 0 for $x \in [0, p_0)$.

Proof of Theorem 5 (continued)

• Decompose the event $\{M \ge x\}$:

$$\mathbb{P}(M \ge x) = \mathbb{P}(M \ge x, Y = 0) + \mathbb{P}(M \ge x, Y = 1)$$

• On $\{Y = 1\}$, $p_1 = 1 \ge x$ a.s. So $\{M \ge x\} \cap \{Y = 1\} = \{Y = 1\}$:

$$\mathbb{P}(M \ge x) = \mathbb{P}(Y = 1) + \mathbb{P}(M \ge x, Y = 0)
= \mathbb{P}(Y = 1) + \mathbb{P}(Y = 0)\mathbb{P}(M \ge x \mid Y = 0)
= p_0 + (1 - p_0)\mathbb{P}(M \ge x \mid Y = 0)$$

- From Theorem 4: $\frac{p_0}{x} = p_0 + (1 p_0) \mathbb{P}(M \ge x \mid Y = 0)$
- Solving for $\mathbb{P}(M \ge x \mid Y = 0)$:

$$\mathbb{P}(M \ge x \mid Y = 0) = \left(\frac{p_0}{1 - p_0}\right) \cdot \left(\frac{1 - x}{x}\right)$$

• **Theorem 6:** When $p_A \neq p_B$, let team A be the favorite $(\mu^* \geq 0)$. Then the distribution of M_ℓ satisfies

$$F_{M_{\ell}}(x) = \begin{cases} 1 - \frac{1 - p_0}{x} & \text{if } x \in [1 - p_0, p_0) \\ 2 - \frac{1}{x} & \text{if } x \in [p_0, 1) \end{cases}$$

where $p_0 = \Phi(\mu^*)$ and $M_\ell = 0$ for $x \in [0, 1 - p_0)$.

Proof of Theorem 6 (continued)

- The distribution of M_{ℓ} is a mixture: $F_{M_{\ell}}(x) = (1 - p_0)F_{M_{\Delta}|Y=0}(x) + p_0F_{M_{B}|Y=1}(x).$
- From Theorem 5, we have the conditional distributions:

$$F_{M_A|Y=0}(x) = \begin{cases} 0 & x \in [0, p_0) \\ 1 - \left(\frac{p_0}{1-p_0}\right) \cdot \left(\frac{1-x}{x}\right) & x \in [p_0, 1) \end{cases}$$

$$F_{M_B|Y=1}(x) = \begin{cases} 0 & x \in [0, 1-p_0) \\ 1 - \left(\frac{1-p_0}{p_0}\right) \cdot \left(\frac{x}{1-x}\right) & x \in [1-p_0, 1) \end{cases}$$

Proof of Theorem 6 (continued)

• For $x \in [1 - p_0, p_0)$: $F_{M_A|Y=0}(x) = 0$ (since $x < p_0$), so

$$egin{split} F_{M_\ell}(x) &= (1-p_0)\cdot 0 + p_0\cdot \left(1-rac{1-p_0}{p_0}\cdot rac{x}{1-x}
ight) \ &= 1-rac{1-p_0}{x} \end{split}$$

• For $x \in [p_0, 1)$: Both terms contribute, giving

$$F_{M_{\ell}}(x) = (1 - p_0) \left(1 - \frac{p_0}{1 - p_0} \cdot \frac{1 - x}{x} \right) + p_0 \left(1 - \frac{1 - p_0}{p_0} \cdot \frac{x}{1 - x} \right)$$
$$= 2 - \frac{1}{x}$$