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Case Study: Super Bowl LVII

Super Bowl LVII: Eagles' Live Win Prob.

100%

@ At the start of the 2nd half,
the Chiefs trailed the Eagles 80%
14-24 and faced a 3rd and
1 at their own 34

o At that point, the Eagles’
projected win probability
was 78.4%

@ On the next play, Jerick
McKinnon converted with a
14-yard run, and the Chiefs
would go on to score, 0%
eventually winning 38-35. 60 45 %0 15 0
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Data via nflfastR

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 2/30



How Often Do Blown Leads Occur?

@ We'd like to understand how rare it is to blow a lead of this
magnitude!
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How Often Do Blown Leads Occur?

@ We'd like to understand how rare it is to blow a lead of this
magnitude!

@ Intuitively, most people would assume it happens very rarely (about
21.6% of the time), but maybe this is wrong.

@ To investigate this, we formalize the question mathematically.
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Mathematical Framework

@ The win probability of a team i at time t is a function of team
strength S; and game state (G, t). Symbolically,

W;(t) = f(S;,G,t), tel0,T]
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Mathematical Framework

@ The win probability of a team i at time t is a function of team
strength S; and game state (G, t). Symbolically,

W;(t) = f(S;,G,t), tel0,T]

@ In a two-team game between teams A and B, at any time t we have

Wa(t) + Wp(t) =1

e For the eventual loser ¢, we know that W;(T) = 0. So the
quantity of interest (the maximum win prob. of the losing team) is
given by the random variable

M, = m?X Wg(t)
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Mathematical Framework

@ The win probability of a team i at time t is a function of team
strength S; and game state (G, t). Symbolically,

W;(t) = f(S;,G,t), tel0,T]

@ In a two-team game between teams A and B, at any time t we have

Wa(t) + Wp(t) =1

e For the eventual loser ¢, we know that W;(T) = 0. So the
quantity of interest (the maximum win prob. of the losing team) is
given by the random variable

M, = m?X Wg(t)

@ We will investigate the distribution of M, as a function of the team
strengths S, and Sg.
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Simulation Setup

@ Estimating the win probability function f is difficult in practice.
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@ Estimating the win probability function f is difficult in practice.

o Game state (G, t) is multi-dimensional highly non-linear.
o Team strengths Sp and Sg are non-trivial to estimate.

@ To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.
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o Game state (G, t) is multi-dimensional highly non-linear.
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Simulation Setup

@ Estimating the win probability function f is difficult in practice.
o Game state (G, t) is multi-dimensional highly non-linear.
o Team strengths Sp and Sg are non-trivial to estimate.
@ To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.
e Each team has an equal number of possessions N.
e Team strengths ps and pg are fixed and correspond to each team's
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).
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Simulation Setup

@ Estimating the win probability function f is difficult in practice.
o Game state (G, t) is multi-dimensional highly non-linear.
o Team strengths Sp and Sg are non-trivial to estimate.
@ To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

e Each team has an equal number of possessions N.

e Team strengths ps and pg are fixed and correspond to each team's
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

@ So the win prob. for each possible game state (G, t) is given by

WP 4(t) = P [Binom(n¢, pa) + scorea(t) > Binom(n;, pg) + scoreg(t)]

+—PA_P(A and B tie)

PA + PB

where ny = N — t is the number of possessions remaining.
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Simulation Setup

@ For each set of parameters N, pa, pg, we do the following:
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Simulation Setup

@ For each set of parameters N, pa, pg, we do the following:

© Calculate the win prob. for each possible game state (G, t)
@ Simulate 10,000 games between two teams.
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Simulation Setup

@ For each set of parameters N, pa, pg, we do the following:

© Calculate the win prob. for each possible game state (G, t)
@ Simulate 10,000 games between two teams.
© Extract the maximum win prob. attained by the eventual loser (M;).

@ We consider the distribution of My as N, pa, and pg vary.

o Case 1: pa = pg, f is symmetric across teams
o Case 2: pa # pp, f is asymmetric across teams
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Symmetric Case: pa = ps

Distribution of Maximum Win Probability of Loser
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ric Case: Threshold Plot
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Symmetric Case: Takeaways

@ When ps = pg, the support of My is [0.5,1).
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Symmetric Case: Takeaways

@ When ps = pg, the support of My is [0.5,1).
@ Holding N constant, the distribution of M; is identical for all values
of pa = ps.
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Symmetric Case: Takeaways

@ When ps = pg, the support of My is [0.5,1).
@ Holding N constant, the distribution of M; is identical for all values
of pa = ps.
e Implies that the distribution of M, may depend only on some measure
of the difference in probabilities (e.g., [pa — psl, £2. ...).
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@ Holding N constant, the distribution of M; is identical for all values
of pa = ps.
e Implies that the distribution of M, may depend only on some measure
of the difference in probabilities (e.g., [pa — psl, £2. ...).

@ Holding pa = pg constant, the distribution of M, becomes less
discrete and approaches a continuous limit as N increases.
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Symmetric Case: Takeaways

@ When ps = pg, the support of My is [0.5,1).
@ Holding N constant, the distribution of M; is identical for all values
of pa = ps.
e Implies that the distribution of M, may depend only on some measure
of the difference in probabilities (e.g., [pa — psl, £2. ...).
@ Holding pa = pg constant, the distribution of M, becomes less
discrete and approaches a continuous limit as N increases.

@ In about half of all games, the losing team attains a win probability
of at least 66% or more.
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Asymmetric Case: pa # ps

Distribution of Maximum Win Probability of Loser
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Asymmetric Case: Threshold Plot
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Asymmetric Case: Takeaways

@ When pa # pg, the support of My is [min{pa, ps},1).
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Asymmetric Case: Takeaways
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@ Holding N constant, the distribution of M, is constant whenever
|pa — pBg| is constant.
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@ Holding N constant, the distribution of M, is constant whenever
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e Implies that the distribution of M, depends only on the absolute
difference in probabilities |pa — ps].
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Asymmetric Case: Takeaways

@ When pa # pg, the support of My is [min{pa, ps},1).
@ Holding N constant, the distribution of M, is constant whenever
|pa — pBg| is constant.
e Implies that the distribution of M, depends only on the absolute
difference in probabilities |pa — ps].
@ Holding N constant, the distribution of M, becomes increasingly
right-skewed over the support as |pa — pg| increases.
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Asymmetric Case: Takeaways

@ When pa # pg, the support of My is [min{pa, ps},1).
@ Holding N constant, the distribution of M, is constant whenever
|pa — pBg| is constant.
e Implies that the distribution of M, depends only on the absolute
difference in probabilities |pa — ps].
@ Holding N constant, the distribution of M, becomes increasingly
right-skewed over the support as |pa — pg| increases.

@ Larger strength differentials decrease the proportion of games where
the losing team attains a high win probability.
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Towards a Closed-Form Solution

@ We hope to derive a closed-form solution for the distribution of M,
in our simplified model. To do this, we define the following:
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@ We hope to derive a closed-form solution for the distribution of M,
in our simplified model. To do this, we define the following:

o Xy = scorea(k) — scoreg(k) is the score differential at time k.
o Fix =0(Xo,...,Xk) is the set of information available at time k.
o Y = 1(x,>0; is the event that team A wins the game.

@ Then we can define Team A’s win probability at each time step k as
a Doob martingale:

pk:]E[Y‘fk], kZO,...,N
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o Fix =0(Xo,...,Xk) is the set of information available at time k.
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@ Then we can define Team A’s win probability at each time step k as
a Doob martingale:

pk:]E[Y‘fk], kZO,...,N

@ From here, define the following:
o Mja = maxo<k<n Pk is the maximum win probability team A attains.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 13 /30



Towards a Closed-Form Solution

@ We hope to derive a closed-form solution for the distribution of M,
in our simplified model. To do this, we define the following:

o Xy = scorea(k) — scoreg(k) is the score differential at time k.
o Fix =0(Xo,...,Xk) is the set of information available at time k.
o Y = 1(x,>0; is the event that team A wins the game.

@ Then we can define Team A’s win probability at each time step k as
a Doob martingale:

pk:]E[Y‘fk], kZO,...,N

@ From here, define the following:

o Mja = maxo<k<n Pk is the maximum win probability team A attains.
o 7x = min{k < N : py > x} is the first time pj, exceeds x.
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Towards a Closed-Form Solution

@ We hope to derive a closed-form solution for the distribution of M,
in our simplified model. To do this, we define the following:

o Xy = scorea(k) — scoreg(k) is the score differential at time k.
o Fix =0(Xo,...,Xk) is the set of information available at time k.
o Y = 1(x,>0; is the event that team A wins the game.

@ Then we can define Team A’s win probability at each time step k as
a Doob martingale:

pk:]E[Y‘fk], kZO,...,N

@ From here, define the following:

o Mja = maxo<k<n Pk is the maximum win probability team A attains.
o 7x = min{k < N : py > x} is the first time pj, exceeds x.

@ Since 7 is a stopping time, we invoke the optional stopping theorem
to derive the distribution of Mj4.
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Closed-Form Distributions: Discrete Case

@ Theorem 1: The distribution of M4 satisfies:
Po
Fm,(x) >1— = x € [po, 1)

with equality when P(7, = N) = 0 (continuous limits).?

!Note that M4 has a point mass of weight po at 1.
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Closed-Form Distributions: Discrete Case

@ Theorem 1: The distribution of M4 satisfies:
Po
Fm,(x) >1— = x € [po, 1)

with equality when P(7, = N) = 0 (continuous limits).?
@ Theorem 2: The conditional distribution of M4 given that team A
loses satisfies:

FMAYzo(X)21—< PO )-(1_X>, x € [po,1)

1—pg X

with equality when P(7, = N) = 0 (continuous limits)

!Note that M4 has a point mass of weight po at 1.
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Closed-Form Distributions: Discrete Case

@ What about the distribution for team B?
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Closed-Form Distributions: Discrete Case

@ What about the distribution for team B?
e Recall that team B's path is just a reflection of team A’s!
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e So Mg has a similar form to My, but with py replaced by 1 — py.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 15 /30



Closed-Form Distributions: Discrete Case

@ What about the distribution for team B?

e Recall that team B's path is just a reflection of team A’s!
e So Mg has a similar form to My, but with py replaced by 1 — py.

@ So then what about the distribution of the eventual loser M,?
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Closed-Form Distributions: Discrete Case

@ What about the distribution for team B?

e Recall that team B's path is just a reflection of team A’s!

e So Mg has a similar form to My, but with py replaced by 1 — py.
@ So then what about the distribution of the eventual loser M,?

e This is a mixture of the distributions (Ma|A loses) and (Mg|B loses)
with weights (1 — po) and po, respectively.
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Closed-Form Distributions: Discrete Case

@ What about the distribution for team B?
e Recall that team B's path is just a reflection of team A’s!
e So Mg has a similar form to My, but with py replaced by 1 — py.
@ So then what about the distribution of the eventual loser M,?
e This is a mixture of the distributions (Ma|A loses) and (Mg|B loses)
with weights (1 — po) and po, respectively.
o But wait! In the region [min(po, 1 — po), max(po,1 — po)), the
distribution of M, comes entirely from the underdog! So we must
define the distribution of M, piecewise.
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Closed-Form Distributions: Discrete Case

o What about the distribution for team B?
e Recall that team B's path is just a reflection of team A’s!
e So Mg has a similar form to My, but with py replaced by 1 — py.
@ So then what about the distribution of the eventual loser M,?
e This is a mixture of the distributions (Ma|A loses) and (Mg|B loses)
with weights (1 — po) and po, respectively.
o But wait! In the region [min(po, 1 — po), max(po,1 — po)), the
distribution of M, comes entirely from the underdog! So we must
define the distribution of M, piecewise.

@ Theorem 3: Since team labels are arbitrary, let team A be the
favorite (pp > 0.5). Then the distribution of M, satisfies:

]__
1- =P ifx e[l po,po)
FM@(X)Z ]_X
2= if x € [po, 1)
X

with equality when P(7, = N) = 0 (continuous limits)
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From Inequalities to Equality: The Brownian Limit

@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?
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From Inequalities to Equality: The Brownian Limit

@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?

@ In discrete time, there are finitely-many levels for WP, and WPg,
so the process can “jump over” level x at the final step.
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@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?

@ In discrete time, there are finitely-many levels for WP, and WPg,
so the process can “jump over” level x at the final step.

e For example, consider the simplest case: N =1 and py = 0.5.
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From Inequalities to Equality: The Brownian Limit

@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?

@ In discrete time, there are finitely-many levels for WP, and WPg,
so the process can “jump over” level x at the final step.

e For example, consider the simplest case: N =1 and py = 0.5.
o Then WP4(0) = 0.5 and WP,4(1) = {0,1}, jumping the rest!
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@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?
@ In discrete time, there are finitely-many levels for WP, and WPg,
so the process can “jump over” level x at the final step.
e For example, consider the simplest case: N =1 and py = 0.5.
o Then WP4(0) = 0.5 and WP,4(1) = {0,1}, jumping the rest!
e What we need to prevent this behavior is continuous sample paths,
which prevents the process from jumping over levels.
@ How do we get continuous sample paths? By letting N — oo.

e In this limit, the process becomes continuous and we can derive exact
closed-form expressions for the distributions of My, Mg, and M,.
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From Inequalities to Equality: The Brownian Limit

@ The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What's the limitation?

@ In discrete time, there are finitely-many levels for WP, and WPg,
so the process can “jump over” level x at the final step.

e For example, consider the simplest case: N =1 and py = 0.5.

o Then WP4(0) = 0.5 and WP,4(1) = {0,1}, jumping the rest!

e What we need to prevent this behavior is continuous sample paths,
which prevents the process from jumping over levels.

@ How do we get continuous sample paths? By letting N — oo.

e In this limit, the process becomes continuous and we can derive exact
closed-form expressions for the distributions of My, Mg, and M,.

e In addition, Donsker’s Invariance Principle allows us to
approximate the scoring process X, with a Brownian motion!
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Towards a Continuous Closed-Form

@ We hope to derive a continuous closed-form for the distribution of
My in our simplified model. Like before, we have:
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My in our simplified model. Like before, we have:

o Xy = scorea(k) — scoreg(k) is the score differential at time k.
o Fi = 0(Xop,...,Xk) is the set of information available at time k.

@ Then define the following quantities:

e 1t = pa — pg is the difference in scoring probabilities.
o 02 = pa(1 — pa) + pa(1l — pg) is the variance of each step in the
scoring process.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 17 /30



Towards a Continuous Closed-Form

@ We hope to derive a continuous closed-form for the distribution of
My in our simplified model. Like before, we have:

o Xy = scorea(k) — scoreg(k) is the score differential at time k.
o Fi = 0(Xop,...,Xk) is the set of information available at time k.

@ Then define the following quantities:

e 1t = pa — pg is the difference in scoring probabilities.
o 02 = pa(1 — pa) + pa(1l — pg) is the variance of each step in the
scoring process.

@ Then by Donsker's Invariance Principle, we have that

X N
Nt 4B 4yt = Q te[0,1]

ov'N o

where B; is standard Brownian motion.
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Towards a Continuous Closed-Form

@ From here, note the following:
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® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).
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Towards a Continuous Closed-Form

@ From here, note the following:

o The discrete terminal event {Xy > 0} converges to {B; + pu* > 0}.

® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).

@ Now we can define Team A's win probability as a Doob martingale:

pt:E[Y’]:t]; tE[O,l]

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 18 /30



Towards a Continuous Closed-Form

@ From here, note the following:

o The discrete terminal event {Xy > 0} converges to {B; + pu* > 0}.

® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).

@ Now we can define Team A's win probability as a Doob martingale:

pt:E[Y’]:t]; tE[O,l]

@ Then we can define the following quantities:

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 18 /30



Towards a Continuous Closed-Form

@ From here, note the following:
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® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).

@ Now we can define Team A's win probability as a Doob martingale:

pt:E[Y’]:t]; tE[O,l]

@ Then we can define the following quantities:

e M = sup p; is the maximum win probability team A attains.
0<t<1
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Towards a Continuous Closed-Form

@ From here, note the following:

o The discrete terminal event {Xy > 0} converges to {B; + pu* > 0}.

® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).

@ Now we can define Team A's win probability as a Doob martingale:

pt:E[Y’]:t]; tE[O,l]

@ Then we can define the following quantities:

e M = sup p; is the maximum win probability team A attains.
0<t<1

o 7, =inf{t €[0,1] : p = x} is the first time p; exceeds x.
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Towards a Continuous Closed-Form

@ From here, note the following:

o The discrete terminal event {Xy > 0} converges to {B; + pu* > 0}.
® So Y =1p,,->0y is the event that team A wins the game.
o pp=P(Y =1)=d(u).

@ Now we can define Team A's win probability as a Doob martingale:

pt:E[Y’]:t]; tE[O,l]

@ Then we can define the following quantities:

e M = sup p; is the maximum win probability team A attains.
0<t<1
o 7, =inf{t €[0,1] : p = x} is the first time p; exceeds x.

@ Then we invoke the optional stopping theorem and use properties of
Brownian motion to derive the distribution of My, Mg, and M,.
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Closed-Form Distributions: Continuous Case

@ Theorem 4: The distribution of My, satisfies:

Fn) =12 =1 2V o) )
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Closed-Form Distributions: Continuous Case

@ Theorem 4: The distribution of My, satisfies:

Fn) =12 =1 2V o) )

@ Theorem 5: The conditional distribution of M4 given that team A
loses satisfies:

Fiay=o(x) = —<150p0>‘<1;x>a x € [po,1)
:1_<%>.<1XX>, x € [d(u), 1)
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Closed-Form Distributions: Continuous Case

@ What about the distribution for team B?
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Closed-Form Distributions: Continuous Case

@ What about the distribution for team B?

e In the discrete case, we just replaced py with 1 — pg.
e So in the continuous case, we just replace ®(u*) with &(—p*).

@ We saw in the discrete case that the distribution of M is a piecewise
mixture. We use a similar logic to derive the distribution of M,.
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Closed-Form Distributions: Continuous Case

o What about the distribution for team B?
e In the discrete case, we just replaced py with 1 — pg.
e So in the continuous case, we just replace ®(u*) with &(—p*).
@ We saw in the discrete case that the distribution of M is a piecewise
mixture. We use a similar logic to derive the distribution of M,.
@ Theorem 6: Since team labels are arbitrary, let team A be the
favorite (u* > 0). Then the distribution of M, satisfies

1—1_7[)0 ifXE[]_—po,po)
FM@(X): 1X
y P if x € [po, 1)
X

where pg = ®(u*).
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Closed-Form Examples

@ In evenly-matched games, we have the following:
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Closed-Form Examples

@ In evenly-matched games, we have the following:
o Each team's starting win probability (pg) is 0.5.
o Fu,(x) =2— 1 uniformly over all x € [0.5,1).

@ In unevenly-matched games, we have the following:
e Starting win probabillities differ (po # 0.5).
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o Each team's starting win probability (pg) is 0.5.
o Fu,(x) =2— 1 uniformly over all x € [0.5,1).

@ In unevenly-matched games, we have the following:
e Starting win probabillities differ (po # 0.5).

o M, is distributed piecewise over x € [p(()d°g), 1).
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Closed-Form Examples

@ In evenly-matched games, we have the following:

e Each team'’s starting win probability (pp) is 0.5.
o Fu,(x) =2— 1 uniformly over all x € [0.5,1).

@ In unevenly-matched games, we have the following:

e Starting win probabillities differ (po # 0.5).

o M, is distributed piecewise over x € [p(()d°g), 1).

dog

e From [p, fav)), only the underdog’s maxima contribute.
(fav)

e From [p0 71), both teams’ maxima contribute.
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But Wait. .. Does This Even Matter?

@ The math is clean, but it's still a major simplification of sports!
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But Wait. .. Does This Even Matter?

@ The math is clean, but it's still a major simplification of sports!
Scoring often isn't binary!

True team scoring probabilities may vary throughout a game!
Teams often have an unequal number of possessions!

Weather, injuries, game strategy, and other external factors matter!
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But Wait. .. Does This Even Matter?

@ The math is clean, but it's still a major simplification of sports!

e Scoring often isn't binary!

o True team scoring probabilities may vary throughout a game!

e Teams often have an unequal number of possessions!

o Weather, injuries, game strategy, and other external factors matter!

@ Let's take a look at the distribution of M, for real-life games. ..
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Evenly-Matched NFL Games (2002-2024, |Spread| < 2)

Empirical Distribution of Maximum Win Probability of Loser
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Data via nflfastR (2002-2024)
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Evenly-Matched NFL Games (2002-2024, |Spread| < 2)

Empirical Proportion of Games Where the Loser's Max Win Probability = a
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Unevenly-Matched NFL Games: 2002-2024, |Spread| = 3

Empirical Distribution of Maximum Win Probability of Loser
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Unevenly-Matched NFL Games: 2002-2024, |Spread| = 3

Empirical Proportion of Games Where the Loser's Max Win Probability = a
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Conclusions

@ Our solutions closely match the empirical distribution of the
maximum win probability of the eventual loser (M;)!
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Conclusions

@ Our solutions closely match the empirical distribution of the
maximum win probability of the eventual loser (M;)!

@ Blown leads happen all the time, especially in even matchups!

e Conditioning on an eventual loss fundamentally changes the
distribution of the maximum win probability attained.
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Conclusions

@ In Super Bowl LVII, the Eagles reached a maximum win probability
of 78.4% before ultimately losing.
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e From this position (assuming a well-calibrated model) it’s true that
the Eagles only had a 21.6% chance of losing the game.
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Conclusions

@ In Super Bowl LVII, the Eagles reached a maximum win probability
of 78.4% before ultimately losing.

e From this position (assuming a well-calibrated model) it’s true that
the Eagles only had a 21.6% chance of losing the game.

@ However, the event that the eventual loser of this game reached
78.4% is provably closer to 30%.
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Proof of Theorem 1

@ Theorem 1: When pa = pg, the cumulative distribution of M
satisfies
Fu(x)>1— %, x € [po, 1)

with equality exactly when P(7, = N) = 0.
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Proof of Theorem 1 (continued)

o If x < pg, then 7, =0 a.s., so M > x a.s. and Fy(x) =0.

@ For x > pg, by the optional stopping theorem on the bounded
martingale (px) at 7x A N:

E[pr.an] = Po
@ Decomposing this:
po = Elpr, 1+ <ny] + Elpn1 {7 —ny]
@ Since p,, = x on {7 < N} and py =1 on {7 = N}:

po = xP(7x < N) +P(7« = N)
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Proof of Theorem 1 (continued)

@ Since P(M > x) = P(7x < N) + P(7 = N):
po = xP(M > x) + (1 — x)P(7x = N)

@ For x < 1, P(r, = N) > 0 and we have:

P(M > x) < %, x € [po, 1)

with equality exactly when P(7, = N) = 0.
@ When x =1, 7, = N a.s,, so:

P(M > 1) =P(M =1) = py
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Proof of Theorem 2

@ Theorem 2: When pa = pg, the cumulative distribution of M
conditional on Y = 0 satisfies

FMIY:O(X)Zl—( PO >'(1_X>, x € [po,1)

1—po X

with equality exactly when P(7, = N) = 0.
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Proof of Theorem 2 (continued)

@ Decompose the event {M > x}:
PIM>x)=P(M>x,Y=0)+P(M>x,Y =1)
e On{Y =1}, py=1>xas So{M>x}n{Y =1} ={Y =1}

P(M > x)=P(Y =1)+P(M > x, Y = 0)
=P(Y =1)+P(Y =0)P(M > x| Y =0)
=po+ (1= po)P(M=x|Y =0)

@ From Theorem 1: 2 > py + (1 — po)P(M > x | Y =0)
@ Solving for P(M > x | Y =0):

P(MZX|Y:0)S<150PO>'(1;X>

with equality exactly when P(7, = N) = 0.
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Proof of Theorem 3

@ Theorem 3: When pa = pg, the distribution of M, satisfies
1
Fun,(x) >2— o XE€ [0.5,1)

with equality exactly when P(7, = N) = 0.
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Proof of Theorem 3 (continued)

@ Since pa = pg, we have pg = 0.5 and the mixture weights are equal.
@ From Theorem 2, both conditional distributions are identical:

Fualy=0(x) = Fugly=1(x) = 1~ <0'5> . (1 —X> _ o l-x

ﬁ X X

@ Since both teams have identical distributions, the mixture is simply:

1-— 1
x:2_7

Fi, (x) 2 0.5 Fayy=0(x) + 0.5 Fiygy=1(x) =1 = — x
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Proof of Theorem 4

@ Theorem 4: When pa # pg, the cumulative distribution of M
satisfies
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Proof of Theorem 4 (continued)

@ By the optional stopping theorem on the bounded martingale (p;) at
T N 1:
E[pr 1] = po

@ Decomposing this:
po = Elpr 1 <1yl + E[p11 21y
@ Since p;, = x on {7 < 1} and p1 =1 on {7 = 1}:
po = xP(rx < 1)+ P(rx =1)
@ Since P(M > x) =P(7x < 1) + P(7x = 1):

po = xP(M > x) + P(r,, = 1)
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Proof of Theorem 4 (continued)

e For x < 1, P(7x = 1) = 0 (continuous paths), so:

P(sz):’f:q’(f ) xelpo1)

@ When x=1, 7, =1 a.s., so:

P(M > 1) =P(M =1) = py = ®(1*)
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Proof of Theorem 5

@ Theorem 5: When p4 # pg, the conditional distribution of M
given Y = 0 satisfies

FMIY—O(X):1< P )‘(1_)()» x € [po, 1)

1—p0 X

where pp = ®(p*) and M =0 for x € [0, po).
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Proof of Theorem 5 (continued)

e Decompose the event {M > x}:
P(M>x)=P(M>x,Y =0)+P(M>x,Y =1)
e On{Y=1}, pr=1>xas. So{M>x}nN{Y =1} ={Y =1}

P(M > x)=P(Y =1)+P(M > x, Y = 0)
=P(Y =1)+P(Y =0)P(M > x| Y =0)
=po+ (1= po)P(M > x| Y =0)

@ From Theorem 4: 22 = py+ (1 — po)P(M > x| Y =0)
@ Solving for P(M > x | Y =0):

P(szlY—O)—(lfop())'(l;X)
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Proof of Theorem 6

@ Theorem 6: When ps # pg, let team A be the favorite (u* > 0).
Then the distribution of M, satisfies

1= 1P e e 1= o, po)
Fum,(x) = 15
2— = if x € [po, 1)
X

where py = ®(u*) and My =0 for x € [0,1 — pp).
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Proof of Theorem 6 (continued)

@ The distribution of M, is a mixture:
Fum,(x) = (1 - PO)FMA|Y:O(X) + pOFMB|Y:1(X)'
@ From Theorem 5, we have the conditional distributions:

0 x € [0, po)
FMmMﬂZL_@%)CX)XGW”

0 x €[0,1— po)
Frmgly=1(x) = {1 _ (1/_JTPO> ) <ﬁ) x€e[l— Pofji)
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Proof of Theorem 6 (continued)

o For x € [1 — po, po): Fumy, y=o(x) = 0 (since x < pp), so

. 1—p0 X
Fiu, () = (1— po) -0+ po (1 N 1X)

~1-po
X

=1

@ For x € [po,1): Both terms contribute, giving

FMe(X)Z(l—po)<1— Po .1_X>+p0<1_1—130_ x)

1-pp x po 1—x
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