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Case Study: Super Bowl LVII

At the start of the 2nd half,
the Chiefs trailed the Eagles
14–24 and faced a 3rd and
1 at their own 34

At that point, the Eagles’
projected win probability
was 78.4%

On the next play, Jerick
McKinnon converted with a
14-yard run, and the Chiefs
would go on to score,
eventually winning 38–35.

Data via nflfastR
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How Often Do Blown Leads Occur?

We’d like to understand how rare it is to blow a lead of this
magnitude!

Intuitively, most people would assume it happens very rarely (about
21.6% of the time), but maybe this is wrong.

To investigate this, we formalize the question mathematically.
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Mathematical Framework

The win probability of a team i at time t is a function of team
strength Si and game state (G, t). Symbolically,

Wi (t) = f (Si ,G, t), t ∈ [0,T ]

In a two-team game between teams A and B, at any time t we have

WA(t) +WB(t) = 1

For the eventual loser ℓ, we know that Wℓ(T ) = 0. So the
quantity of interest (the maximum win prob. of the losing team) is
given by the random variable

Mℓ = max
t

Wℓ(t)

We will investigate the distribution of Mℓ as a function of the team
strengths SA and SB .
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Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.

Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.

Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

Estimating the win probability function f is difficult in practice.

Game state (G, t) is multi-dimensional highly non-linear.
Team strengths SA and SB are non-trivial to estimate.

To simplify the problem, we specify a simple model to allow exact
calculation of in-game win probabilities.

Each team has an equal number of possessions N.
Team strengths pA and pB are fixed and correspond to each team’s
probability of scoring on a given possession. Ties are broken by a
weighted coin flip (overtime).

So the win prob. for each possible game state (G, t) is given by

WPA(t) = P [Binom(nt , pA) + scoreA(t) > Binom(nt , pB) + scoreB(t)]

+
pA

pA + pB
P(A and B tie)

where nt = N − t is the number of possessions remaining.

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 5 / 30



Simulation Setup

For each set of parameters N, pA, pB , we do the following:

1 Calculate the win prob. for each possible game state (G, t)
2 Simulate 10,000 games between two teams.
3 Extract the maximum win prob. attained by the eventual loser (Mℓ).

We consider the distribution of Mℓ as N, pA, and pB vary.

Case 1: pA = pB , f is symmetric across teams
Case 2: pA ̸= pB , f is asymmetric across teams
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Symmetric Case: pA = pB
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Symmetric Case: Threshold Plot
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Symmetric Case: Takeaways

When pA = pB , the support of Mℓ is [0.5, 1).

Holding N constant, the distribution of Mℓ is identical for all values
of pA = pB .

Implies that the distribution of Mℓ may depend only on some measure
of the difference in probabilities (e.g., |pA − pB |, pA

pB
, . . .).

Holding pA = pB constant, the distribution of Mℓ becomes less
discrete and approaches a continuous limit as N increases.

In about half of all games, the losing team attains a win probability
of at least 66% or more.
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Asymmetric Case: pA ̸= pB
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Asymmetric Case: Threshold Plot
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Asymmetric Case: Takeaways

When pA ̸= pB , the support of Mℓ is [min{pA, pB}, 1).

Holding N constant, the distribution of Mℓ is constant whenever
|pA − pB | is constant.

Implies that the distribution of Mℓ depends only on the absolute
difference in probabilities |pA − pB |.

Holding N constant, the distribution of Mℓ becomes increasingly
right-skewed over the support as |pA − pB | increases.
Larger strength differentials decrease the proportion of games where
the losing team attains a high win probability.
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Towards a Closed-Form Solution

We hope to derive a closed-form solution for the distribution of Mℓ

in our simplified model. To do this, we define the following:

Xk = scoreA(k)− scoreB(k) is the score differential at time k.
Fk = σ(X0, . . . ,Xk) is the set of information available at time k .
Y = 1{XN≥0} is the event that team A wins the game.

Then we can define Team A’s win probability at each time step k as
a Doob martingale:

pk = E[Y | Fk ], k = 0, . . . ,N

From here, define the following:

MA = max0≤k≤N pk is the maximum win probability team A attains.
τx = min{k ≤ N : pk ≥ x} is the first time pk exceeds x .

Since τx is a stopping time, we invoke the optional stopping theorem
to derive the distribution of MA.
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Closed-Form Distributions: Discrete Case

Theorem 1: The distribution of MA satisfies:

FMA
(x) ≥ 1− p0

x
, x ∈ [p0, 1)

with equality when P(τx = N) = 0 (continuous limits).1

Theorem 2: The conditional distribution of MA given that team A
loses satisfies:

FMA|Y=0(x) ≥ 1−
(

p0
1− p0

)
·
(
1− x

x

)
, x ∈ [p0, 1)

with equality when P(τx = N) = 0 (continuous limits)

1Note that MA has a point mass of weight p0 at 1.
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Closed-Form Distributions: Discrete Case

What about the distribution for team B?

Recall that team B’s path is just a reflection of team A’s!
So MB has a similar form to MA, but with p0 replaced by 1− p0.

So then what about the distribution of the eventual loser Mℓ?
This is a mixture of the distributions (MA|A loses) and (MB |B loses)
with weights (1− p0) and p0, respectively.
But wait! In the region [min(p0, 1− p0),max(p0, 1− p0)), the
distribution of Mℓ comes entirely from the underdog! So we must
define the distribution of Mℓ piecewise.

Theorem 3: Since team labels are arbitrary, let team A be the
favorite (p0 ≥ 0.5). Then the distribution of Mℓ satisfies:

FMℓ
(x) ≥


1− 1− p0

x
if x ∈ [1− p0, p0)

2− 1

x
if x ∈ [p0, 1)

with equality when P(τx = N) = 0 (continuous limits)
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From Inequalities to Equality: The Brownian Limit

The inequalities in Theorems 1-3 are tight, but what if we want
something stronger, like a density equality? What’s the limitation?

In discrete time, there are finitely-many levels for WPA and WPB ,
so the process can “jump over” level x at the final step.

For example, consider the simplest case: N = 1 and p0 = 0.5.
Then WPA(0) = 0.5 and WPA(1) = {0, 1}, jumping the rest!
What we need to prevent this behavior is continuous sample paths,
which prevents the process from jumping over levels.

How do we get continuous sample paths? By letting N → ∞.

In this limit, the process becomes continuous and we can derive exact
closed-form expressions for the distributions of MA, MB , and Mℓ.
In addition, Donsker’s Invariance Principle allows us to
approximate the scoring process Xk with a Brownian motion!
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Towards a Continuous Closed-Form

We hope to derive a continuous closed-form for the distribution of
Mℓ in our simplified model. Like before, we have:

Xk = scoreA(k)− scoreB(k) is the score differential at time k.
Fk = σ(X0, . . . ,Xk) is the set of information available at time k .

Then define the following quantities:

µ = pA − pB is the difference in scoring probabilities.
σ2 = pA(1− pA) + pB(1− pB) is the variance of each step in the
scoring process.

Then by Donsker’s Invariance Principle, we have that

X⌊Nt⌋

σ
√
N

d−→ Bt + µ∗t, µ∗ =

√
N µ

σ
, t ∈ [0, 1]

where Bt is standard Brownian motion.
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Towards a Continuous Closed-Form

From here, note the following:

The discrete terminal event {XN ≥ 0} converges to {B1 + µ∗ ≥ 0}.
So Y = 1{B1+µ∗≥0} is the event that team A wins the game.
p0 = P(Y = 1) = Φ(µ∗).

Now we can define Team A’s win probability as a Doob martingale:

pt = E[Y | Ft ], t ∈ [0, 1]

Then we can define the following quantities:

M = sup
0≤t≤1

pt is the maximum win probability team A attains.

τx = inf{t ∈ [0, 1] : pt = x} is the first time pt exceeds x .

Then we invoke the optional stopping theorem and use properties of
Brownian motion to derive the distribution of MA,MB , and Mℓ.
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Closed-Form Distributions: Continuous Case

Theorem 4: The distribution of MA satisfies:

FMA
(x) = 1− p0

x
= 1− Φ(µ∗)

x
, x ∈ [Φ(µ∗), 1)

Theorem 5: The conditional distribution of MA given that team A
loses satisfies:

FMA|Y=0(x) = 1−
(

p0
1− p0

)
·
(
1− x

x

)
, x ∈ [p0, 1)

= 1−
(

Φ(µ∗)

1− Φ(µ∗)

)
·
(
1− x

x

)
, x ∈ [Φ(µ∗), 1)
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Closed-Form Distributions: Continuous Case

What about the distribution for team B?

In the discrete case, we just replaced p0 with 1− p0.
So in the continuous case, we just replace Φ(µ∗) with Φ(−µ∗).

We saw in the discrete case that the distribution of Mℓ is a piecewise
mixture. We use a similar logic to derive the distribution of Mℓ.

Theorem 6: Since team labels are arbitrary, let team A be the
favorite (µ∗ ≥ 0). Then the distribution of Mℓ satisfies

FMℓ
(x) =


1− 1− p0

x
if x ∈ [1− p0, p0)

2− 1

x
if x ∈ [p0, 1)

where p0 = Φ(µ∗).
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Closed-Form Examples

In evenly-matched games, we have the following:

Each team’s starting win probability (p0) is 0.5.
FMℓ

(x) = 2− 1
x uniformly over all x ∈ [0.5, 1).

In unevenly-matched games, we have the following:

Starting win probabillities differ (p0 ̸= 0.5).

Mℓ is distributed piecewise over x ∈ [p
(dog)
0 , 1).

From [p
(dog)
0 , p

(fav)
0 ), only the underdog’s maxima contribute.

From [p
(fav)
0 , 1), both teams’ maxima contribute.
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But Wait. . . Does This Even Matter?

The math is clean, but it’s still a major simplification of sports!

Scoring often isn’t binary!
True team scoring probabilities may vary throughout a game!
Teams often have an unequal number of possessions!
Weather, injuries, game strategy, and other external factors matter!

Let’s take a look at the distribution of Mℓ for real-life games. . .
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Evenly-Matched NFL Games (2002–2024, |Spread| < 2)

Data via nflfastR (2002–2024)
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Unevenly-Matched NFL Games: 2002–2024, |Spread| = 3

Data via nflfastR (2002–2024)

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 25 / 30



Unevenly-Matched NFL Games: 2002–2024, |Spread| = 3

Data via nflfastR (2002–2024)

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 26 / 30



Conclusions

Our solutions closely match the empirical distribution of the
maximum win probability of the eventual loser (Mℓ)!

Blown leads happen all the time, especially in even matchups!

Conditioning on an eventual loss fundamentally changes the
distribution of the maximum win probability attained.
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Conclusions

In Super Bowl LVII, the Eagles reached a maximum win probability
of 78.4% before ultimately losing.

From this position (assuming a well-calibrated model) it’s true that
the Eagles only had a 21.6% chance of losing the game.

However, the event that the eventual loser of this game reached
78.4% is provably closer to 30%.
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Proof of Theorem 1

Theorem 1: When pA = pB , the cumulative distribution of M
satisfies

FM(x) ≥ 1− p0
x
, x ∈ [p0, 1)

with equality exactly when P(τx = N) = 0.
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Proof of Theorem 1 (continued)

If x ≤ p0, then τx = 0 a.s., so M ≥ x a.s. and FM(x) = 0.

For x > p0, by the optional stopping theorem on the bounded
martingale (pk) at τx ∧ N:

E[pτx∧N ] = p0

Decomposing this:

p0 = E[pτx1{τx<N}] + E[pN1{τx=N}]

Since pτx = x on {τx < N} and pN = 1 on {τx = N}:

p0 = xP(τx < N) + P(τx = N)

Pipping & Wyner (UPenn) A Paradox of Blown Leads NESSIS 2025 2 / 15



Proof of Theorem 1 (continued)

Since P(M ≥ x) = P(τx < N) + P(τx = N):

p0 = xP(M ≥ x) + (1− x)P(τx = N)

For x < 1, P(τx = N) ≥ 0 and we have:

P(M ≥ x) ≤ p0
x
, x ∈ [p0, 1)

with equality exactly when P(τx = N) = 0.

When x = 1, τx = N a.s., so:

P(M ≥ 1) = P(M = 1) = p0
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Proof of Theorem 2

Theorem 2: When pA = pB , the cumulative distribution of M
conditional on Y = 0 satisfies

FM|Y=0(x) ≥ 1−
(

p0
1− p0

)
·
(
1− x

x

)
, x ∈ [p0, 1)

with equality exactly when P(τx = N) = 0.
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Proof of Theorem 2 (continued)

Decompose the event {M ≥ x}:

P(M ≥ x) = P(M ≥ x ,Y = 0) + P(M ≥ x ,Y = 1)

On {Y = 1}, pN = 1 ≥ x a.s. So {M ≥ x} ∩ {Y = 1} = {Y = 1}:

P(M ≥ x) = P(Y = 1) + P(M ≥ x ,Y = 0)

= P(Y = 1) + P(Y = 0)P(M ≥ x | Y = 0)

= p0 + (1− p0)P(M ≥ x | Y = 0)

From Theorem 1: p0
x ≥ p0 + (1− p0)P(M ≥ x | Y = 0)

Solving for P(M ≥ x | Y = 0):

P(M ≥ x | Y = 0) ≤
(

p0
1− p0

)
·
(
1− x

x

)
with equality exactly when P(τx = N) = 0.
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Proof of Theorem 3

Theorem 3: When pA = pB , the distribution of Mℓ satisfies

FMℓ
(x) ≥ 2− 1

x
, x ∈ [0.5, 1)

with equality exactly when P(τx = N) = 0.
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Proof of Theorem 3 (continued)

Since pA = pB , we have p0 = 0.5 and the mixture weights are equal.

From Theorem 2, both conditional distributions are identical:

FMA|Y=0(x) = FMB |Y=1(x) ≥ 1−
(
0.5

0.5

)
·
(
1− x

x

)
= 1− 1− x

x

Since both teams have identical distributions, the mixture is simply:

FMℓ
(x) ≥ 0.5 · FMA|Y=0(x) + 0.5 · FMB |Y=1(x) = 1− 1− x

x
= 2− 1

x
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Proof of Theorem 4

Theorem 4: When pA ̸= pB , the cumulative distribution of M
satisfies

FM(x) = 1− p0
x

= 1− Φ(µ∗)

x
, x ∈ [p0, 1)
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Proof of Theorem 4 (continued)

By the optional stopping theorem on the bounded martingale (pt) at
τx ∧ 1:

E[pτx∧1] = p0

Decomposing this:

p0 = E[pτx1{τx<1}] + E[p11{τx=1}]

Since pτx = x on {τx < 1} and p1 = 1 on {τx = 1}:

p0 = xP(τx < 1) + P(τx = 1)

Since P(M ≥ x) = P(τx < 1) + P(τx = 1):

p0 = xP(M ≥ x) + P(τx = 1)
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Proof of Theorem 4 (continued)

For x < 1, P(τx = 1) = 0 (continuous paths), so:

P(M ≥ x) =
p0
x

=
Φ(µ∗)

x
, x ∈ [p0, 1)

When x = 1, τx = 1 a.s., so:

P(M ≥ 1) = P(M = 1) = p0 = Φ(µ∗)
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Proof of Theorem 5

Theorem 5: When pA ̸= pB , the conditional distribution of M
given Y = 0 satisfies

FM|Y=0(x) = 1−
(

p0
1− p0

)
·
(
1− x

x

)
, x ∈ [p0, 1)

where p0 = Φ(µ∗) and M = 0 for x ∈ [0, p0).
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Proof of Theorem 5 (continued)

Decompose the event {M ≥ x}:

P(M ≥ x) = P(M ≥ x ,Y = 0) + P(M ≥ x ,Y = 1)

On {Y = 1}, p1 = 1 ≥ x a.s. So {M ≥ x} ∩ {Y = 1} = {Y = 1}:

P(M ≥ x) = P(Y = 1) + P(M ≥ x ,Y = 0)

= P(Y = 1) + P(Y = 0)P(M ≥ x | Y = 0)

= p0 + (1− p0)P(M ≥ x | Y = 0)

From Theorem 4: p0
x = p0 + (1− p0)P(M ≥ x | Y = 0)

Solving for P(M ≥ x | Y = 0):

P(M ≥ x | Y = 0) =

(
p0

1− p0

)
·
(
1− x

x

)
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Proof of Theorem 6

Theorem 6: When pA ̸= pB , let team A be the favorite (µ∗ ≥ 0).
Then the distribution of Mℓ satisfies

FMℓ
(x) =


1− 1− p0

x
if x ∈ [1− p0, p0)

2− 1

x
if x ∈ [p0, 1)

where p0 = Φ(µ∗) and Mℓ = 0 for x ∈ [0, 1− p0).
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Proof of Theorem 6 (continued)

The distribution of Mℓ is a mixture:
FMℓ

(x) = (1− p0)FMA|Y=0(x) + p0FMB |Y=1(x).

From Theorem 5, we have the conditional distributions:

FMA|Y=0(x) =

{
0 x ∈ [0, p0)

1−
(

p0
1−p0

)
·
(
1−x
x

)
x ∈ [p0, 1)

FMB |Y=1(x) =

{
0 x ∈ [0, 1− p0)

1−
(
1−p0
p0

)
·
(

x
1−x

)
x ∈ [1− p0, 1)
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Proof of Theorem 6 (continued)

For x ∈ [1− p0, p0): FMA|Y=0(x) = 0 (since x < p0), so

FMℓ
(x) = (1− p0) · 0 + p0 ·

(
1− 1− p0

p0
· x

1− x

)
= 1− 1− p0

x

For x ∈ [p0, 1): Both terms contribute, giving

FMℓ
(x) = (1− p0)

(
1− p0

1− p0
· 1− x

x

)
+ p0

(
1− 1− p0

p0
· x

1− x

)
= 2− 1

x
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