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Motivation: Understanding complex movement 
dynamics is key to optimizing performance and 
managing load in elite women’s soccer. 
Traditional analyses, however, often overlook the 

multidimensional nature of athlete movement 
data.

Goal: Develop interpretable statistical models 
that quantify movement patterns in elite women’s 

soccer and assess their links to athlete 
performance and match outcomes. 

Approach: 
1. Construct a 3D quantile cube (velocity, 

acceleration, and angle).
2. Compare movement distributions across match 

halves.
3. Apply dimensionality reduction to movement 

patterns in match contexts.

4. Model movement distributions as a function of 
athlete and match characteristics.

Data: 
• GPS data from 9 elite female soccer athletes 

across both halves of 23 matches 
• 1Hz: timestamp, longitude, latitude

• Included athletes >25 min/half in ≥5 matches 
→ 396 unique athlete-match-halves

• Covariates: Match- and athlete-level features for 
each athlete-match-half, stored in 𝑿𝒏 × 𝒓=𝟏𝟑

Processing & Metrics: 
• Transformed coordinates to into (𝑥, 𝑦) 

coordinates in meters and fit a 3rd degree spline
• Calculated velocity, acceleration, and angle 

(180º to 180º) from the spline

• Set velocities < 0.01 m/s and accelerations 
    < 0.001 m/s² to 0, then log-transformed values

Data Object: Quantile Cube
• A 3-D summary of athlete movement 

distributions
• Dimensions: velocity, acceleration, angle

• Discretized into quantiles: 5 velocity × 5 
acceleration × 4 angle 

• Angle offset: starts from -30º

Construction:
• Quantile cube created for each athlete-

match-half from full-dataset quantiles
→ 5 ×  5 × 4 = 100-dimensional 
vector

• Represents either deciseconds or 
proportion of total time spent in each 

movement category
• Resulting dataset: 𝒀𝒏=𝟑𝟗𝟔 × 𝒅=𝟏𝟎𝟎 
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Fig 3. Quantile Cube for Athlete 5 Match 10 1st Half
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DMR Model: half, log(playing time), and position group

Fig 4. Quantile Cubes for Athlete 3 in the 1st and 2nd Halves 

of Match 12

Fig 8. DMR Coefficients for Position Groups (Baseline Category: Defender)

The quantile cube effectively captures multidimensional 
movement dynamics, providing interpretable workload 
analytics. 
• Movement distributions shifted significantly between 

halves, indicating potential acute fatigue or tactical 
shifts.

• PCA and DMR reveal role- and context-specific 
movement signatures, supporting probability-based 
monitoring for tailored training and recovery.

Future: 
• Integrate longitudinal, multimodal data (IMU, RPE, 

wellness data) 
• Validate the framework in real-world settings

Fig 7. DMR Coefficients for 2nd Half (Baseline Category: 1st Half) 

and log(Playing Time)

3. Model Movement Distributions 
• Relate athlete movement distributions to 

contextual factors using Dirichlet-
multinomial regression (DMR) 

• For each athlete-match-half 𝑖, the 
movement distribution 𝒚𝒊 is modeled as a 
draw from a Dirichlet-multinomial (DM) 
distribution parameterized by 𝜼𝒊.

• Each category 𝑗 has a concentration 
parameter 
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    linking covariates to the proportion of time
    spent in that category.

1. Quantify Differences Between Match Halves
• Using Hellinger distance, movement 

distributions differ significantly between the 
1st and 2nd half for each player in every 

match. (see Fig. 4)

2. Reduce Dimensionality of Movement Patterns
• Principal Component Analysis (PCA) reduces 

the 100-dimensional movement data to 7 
components explaining 90% of variance.

• PC1: Captures a shift toward polarized 
movement in Match 1’s 2nd half, with less 
time in moderate-intensity movements

• PC4: Highlights Match 23’s unique pattern, 

with increased low-velocity, high-
acceleration movements

Full 
Paper

Fig 1. Left: Raw GPS data over 50 sec. Right: Interpolating 

spline for the same 50 sec.
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